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Abstract

Many theories of international relations assume that states are “like
units”—but what, precisely, does it mean to say that states are the same? I
argue that sameness must be grounded in the properties of the class of all
possible states. Modeling the state as a producer of force, I show that this
class forms a single, unified component with trivial structural properties: in
a precise mathematical sense, all states are qualitatively alike. I then develop
a meta-theory of state modeling, propose a formal criterion for adequate
representation, and demonstrate that a well-behaved subclass preserves the
structure of the full class while exhibiting stronger quantitative regularities.
The analysis derives as a theorem the foundational premise that states are
alike, opening the door to a new mode of theorizing about state behavior.
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A system consists of interacting units whose collective behavior cannot be
understood through isolated study. Nearly all systemic theories work from
the premise that these units are similar to some degree and in some respect.
In its strong form, the premise holds that units are identical in kind; only
their interactions—and not their intrinsic characteristics—matter for explaining
outcomes. Such theories help us understand firms in markets, birds in flocks,
and even neurons in the brains that devise systemic theories in the first place.

So too with states in the international system. The most influential systemic
theory in international relations, structural realism, developed by Kenneth Waltz
(1979), treats states as functionally identical. Like profit-maximizing firms in
microeconomics, states are reduced to security-maximizing actors under anarchy.
System behavior depends only on how they interact, not on their interiors. This
is a strong claim, often relaxed in practice. After all, states differ in size, regime
type, ideology, and much else. How, then, can they be treated as the same? And
what, exactly, would sameness mean in a theory that insists on it?

This article begins from that puzzle. My aim is to clarify what it means to
say that states are the same. I argue that any adequate notion of sameness must
be grounded not in how states happen to be distributed, but in the structure of
the class of all possible states. A truly systemic theory cannot rest on the empirical
variation of particular cases; it must be about the space of possible ones. The
question, then, is not whether some states are more similar than others, but
whether the space of possible states admits meaningful divisions at all. If it does
not, the premise of “like units” is not merely a simplifying assumption; it is a
structural truth about the domain of theory.

To approach this formally, I model the state as a producer of force: an agent
that transforms resources into coercive capacity, subject to constraints imposed
by a technology and a cost function. This is not an arbitrary starting point. From
Weber (1922) and Hintze (1975) to Tilly (1975; 1990), the bellicist tradition has
held that the state’s defining activity lies in the organization of coercion. As
Tilly’s slogan has it, “war made the state, and the state made war” (Tilly, 1975,
p. 42). Even if war no longer makes states, the production and management of
coercive power remains a necessary, if not sufficient, feature of statehood. To
model the state in this way is to begin from the one dimension of its activity that
all states share. It is a minimalist ontology, but a defensible one.

For any technology 𝜏 and cost function 𝜅, the state’s problem is to choose
the resource allocation 𝑥 that most efficiently produces a desired level of force
𝑚. The resulting policy map 𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 specifies, for each 𝑚, how the state
mobilizes. The collection of all such maps, across all admissible technologies and
costs, constitutes the set of possible states. Studying the structure of this set—its
topology and geometry—is a way of studying the logic of the state itself. It also
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lets us ask, in rigorous terms, what sameness among states means.
The analysis proceeds in two parts. First, the topological. Under minimal

assumptions, the space of states PT ×K is contractible. Contractibility is a strong
form of connectedness: every point can be continuously deformed into every
other without leaving the space. In effect, the class of all possible states is
topologically trivial—any member can represent any other. In systemic terms,
qualitative variation is second-order. Defined by force production alone, there
is only one kind of state. Indeed, there is a ladder of sameness: as we move
from mere connectedness to contractibility, states are alike in increasingly strong
senses.

Second, the modeling. If the space of possible states is contractible, what
kinds of models can represent it adequately? I introduce a subclass of functions—
log-linear technologies and linear costs—that is both tractable and faithful to
the general form. These tame states preserve the topological simplicity of the
full space but exhibit a richer geometry: they form a convex set. Convexity
implies not only unity but also linearity; it permits interpolation, optimization,
and equilibrium analysis. In this sense, the tame model is not just a simplification
but an illumination: a representation that makes the underlying geometry of
statehood visible.

Foundations. This analysis builds on three intellectual traditions.

1. The ontological status of the state. Erik Ringmar (1996) distinguishes between
realist and pluralist views: realists treat the state as a pre-given actor,
pluralists as an emergent bundle of sub-units. Ringmar suggests that we
adjudicate metaphorically—by asking what the state is like. He analogizes
the state to a person, maintaining a longstanding tradition; here, I analogize
it to a firm.1 Both metaphors are useful, but metaphor should not be the
end of the ontological exercise. Following Quine’s (1948) dictum that “to
be is to be the value of a variable,” I treat ontology as a kind of set theory.
As Lowe (2005) puts it, an ontology is “the set of things whose existence is
acknowledged by a particular theory.” To posit the state, on this view, is to
posit a set of states; the defining properties of that set become the defining
properties of the state. The difficulty of ontologizing the state is part of
what makes it unavoidable. As Bartelson (2001) argues, even those who
seek to reject the state as a concept often find it creeping back in. Recent
work continues to take up these questions directly (Epstein, 2013; Hay,
2014; Jessop, 2014; Knio, 2023).

1“Metaphorizing” and “modeling” are not the same. In modeling, I formalize force production
as the action of an agent, as in Alexander Wendt’s Social Theory of International Politics (1999).
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2. The state as a firm. Frederic Lane (1979) envisioned the state as a firm
providing services—among them protection—in exchange for revenue.
Similar ideas appear in Douglass North (1981, Ch. 3), Margaret Levi (1988),
David Lake (1992), and Elizabeth Kier (2021). These accounts differ in detail
but converge on a basic insight: the state governs, in part, by producing and
distributing coercive capacity. The approach here is more abstract and more
literal. I treat the state as a production function: a device mapping inputs
(resources) to outputs (force), subject to technological and cost constraints.
This shares the structure of a firm’s problem in microeconomic theory
(Mas-Colell, Whinston and Green, 1995; Chambers, 1988). The point is not
to reduce the state to a firm, but to use the firm-as-producer template as
a clean starting point. Metaphor becomes model becomes ontology—but
only along one axis of what the state might be.

3. The bellicist tradition. From Weber and Hintze through Tilly, a longstanding
line of thought holds that states are born in war. In this view, the coercive
apparatus emerges from, and is shaped by, violent conflict. Here I take no
stand on whether warmaking is constitutive of statehood or instrumental
to it. I begin from a stylized fact: states possess and produce force. That
premise is consistent with the bellicist tradition, but the framework is
broad enough to encompass others. One could, for instance, use this
structure to model variation in force production as a function of territory
or infrastructural power.

Contributions. The paper contributes in four ways.

1. It clarifies the “like unit” premise. Structural realism and kindred ap-
proaches treat states as functionally identical, but this claim has been
under-theorized. I provide a formal framework to interrogate the assump-
tion on its own terms and determine when, and in what sense, states can be
treated as the same. The claim becomes a theorem rather than a heuristic.

2. It constructs a general yet spare model of the state. Modeling the state as
a producer of force isolates a core feature of systemic behavior while re-
maining agnostic about institutional detail. It provides enough structure to
support geometric and topological analysis without loading in unnecessary
assumptions.

3. It introduces global methods. The technical contribution lies less in novel
mathematics than in a shift of focus. Using elementary topology and
convex analysis, I study global properties of the state space: not how it
looks near any particular state, but how it looks as a whole.
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4. It provides a theory of adequate representation. Recognizing that models
simplify, I ask when a model of states can represent the broader space. I
show that the tame states are a strong deformation retract of the general
model and that they form a convex set. This explains how simpler models
preserve structural insights while gaining analytic tractability; it also cau-
tions that not all model properties reflect properties of the space, urging
humility even when representation is adequate.

Two limits are worth highlighting. First, I have taken only one slice of what states
do. They tax, build, regulate, legitimate; they make and maintain order. But if the
state has many faces, this is the one it cannot do without, and it furnishes a clean
foundation for formal analysis. Second, what follows is a study of a function
in isolation. A state is more than a function; its relations matter. Later work
will reconstruct state identity from its pattern of relations with others—from the
transformations it sends and receives. For now, the claim is modest: if we look
only at the production of force, the class of all possible states is unified; and
within that unity, a tractable, faithful model is available.

Roadmap. The paper proceeds in four sections. Section 1 introduces the model
of state force production and defines the set of possible states. Section 2 analyzes
the topology of that set, showing that it is contractible. Section 3 introduces the
tame states and shows that they form a convex subset that adequately represents
the full space. Section 4 discusses the implications of these results for systemic
theorizing about the state. Appendix A contains proofs and technical details.

1 The State as a Producer of Force

We now turn to the formal model of state militarization. Our goal is to construct
a family of models that characterize how states mobilize resources to achieve
desired force levels. To do so, we will define the primitives of the model, then
formulate the state’s production problem. This will yield a general framework
for analyzing state militarization decisions.

1.1 Motivating Game

To orient the problem, however, we begin in media res. Consider the following
game drawn from the strategic arming literature.
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1 Game
Two states, 𝑖 ∈ {1, 2}, simultaneously choose a force level 𝑚𝑖 ∈ R+. Their payoffs are
given by von Neumann-Morgenstern expected utility functions:

𝑈1(𝑚1 , 𝑚2) =
𝜆𝑚𝛼

1

𝜆𝑚𝛼
1 + 𝑚𝛼

2
× (𝑉 − 𝑘(𝑚1 + 𝑚2)) ,

𝑈2(𝑚1 , 𝑚2) =
𝑚

𝛼
2

𝜆𝑚𝛼
1 + 𝑚𝛼

2
× (𝑉 − 𝑘(𝑚1 + 𝑚2)) ,

where:

1. 𝜆 ∈ R>0 captures the relative effectiveness of the forces;

2. 𝛼 ∈ (0, 1] captures the decisiveness of superior force;

3. 𝑉 ∈ R>0 captures the value of the prize; and

4. 𝑘 ∈ (0, 1] captures the inverse-recuperability of militarization costs.

The game has a unique Nash equilibrium, given by:

(𝑚∗
1 , 𝑚

∗
2 ) = ( 𝛼

1 + 𝛼
⋅
𝑉

𝑘
⋅

𝜆− 1
1+𝛼

1 + 𝜆− 1
1+𝛼

,
𝛼

1 + 𝛼
⋅
𝑉

𝑘
⋅

1

1 + 𝜆− 1
1+𝛼

) ,

and (evidently) this solution is continuous in all parameters. [Proof .]

This game is a stylized representation of a militarization contest between two
states. Each state chooses a militarization level, which determines both its
probability of winning a prize and the costs it incurs. The probability of winning
is determined by a contest function, which depends on the relative militarization
levels and the parameter 𝛼. The costs of militarization are linear in the sum of
the militarization levels, scaled by the parameter 𝑘. The game has a unique Nash
equilibrium in pure strategies, which can be found by solving the first-order
conditions of the expected utility functions.2

As was noted in the introduction, this game is representative of a large
class of models in the international relations literature. Authors in this tradition
use a wide vareity of terms to describe the choice variable 𝑚𝑖 . For example,
Carmen Beviá and Luis C. Corchón (2010) and Jack Hirshleifer (1991) simply
call it “war efforts,” a concept one might measure in francs, battalions, or barrels

2A caveat is in order: here in the main text, we have ignored the corner possibility where both
players choose zero militarization. It is shown in the appendix that this corner solution is never
an equilibrium when the contest takes its usual form at zero.
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of oil. Michelle R. Garfinkel (1990) and Robert Powell (1993) both call it a
“good,” suggesting an output of spending that does not accumulate across periods.
Adam Meirowitz and Anne E. Sartori (2008, fn. 8, p. 333) specifically mention
their synonymous use of “capacity” and “arms,” saying that what they hope to
capture is “any factors that make a state more likely to win a war but are costly to
accumulate—for example, a new technology or military strategy.”3 “Arms” is also
used by Stergios Skaperdas (1992) and Andrew J. Coe and Jane Vaynman (2020).
Roland Hodler and Hadi Yektaş (2012) go so far as to call it “power,” whereas
James D. Fearon (2018) lands on what will be our preferred term: “force level.”
None of the results that follow—nor those in the literature cited above—depend
on the specific terminology used, but to the degree that we wish to imbue the
model with state-centric meaning, “force level” seems most appropriate.

Irrespective of the terminology, however, one question remains unaddressed
in these models.

2 Question
How is the force level 𝑚∗

𝑖 produced by State 𝑖 in models like Game 1, and what does this
tell us about the structure of states?

We seek to answer this question by constructing a model of state militarization.
To do so, we will define the primitives of the model: the state’s desired force
level, its technology for converting resources into force, and its cost of mobilizing
resources. With these in hand, we will formulate the state’s production problem,
which will yield a general framework for analyzing state militarization decisions.
The remainder of this section is devoted to this task.

1.2 A Program for Modeling State Militarization

In light of Question 2, we propose the following program.

3 Program
Construct and investigate a map asserting which resources the state will mobilize given:

1. some specified force level;

2. the state’s technology for converting resources into force; and
3Meirowitz and Sartori study a far more reduced—and elegant—version of the interaction

where the military investment happens first, is privately known, and then is input into a very
general function; their focus is less on the terms of battle and more on how uncertainty influences
bargaining under incomplete information.
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3. the state’s cost of mobilizing resources.

Call such a map the opportunity cost of militarization.

A baseline task is to convince ourselves that this program points us toward a
reasonable (albeit minimalistic) characterization of state behavior. To that end,
we now define the primitives of the model.

Force. The first primitive of the model is the state’s desired force level. This is
the choice variable in Game 1, and it represents the quantity of military power
the state wishes to field. We can think of a player in Game 1 as first choosing
a desired force level, then coming to us to ask how to produce it. Since that
player most commonly chooses over non-negative real numbers, we let𝑀 ≔ R⩾0
denote the set of all possible desired force levels.

Resources. Force is made from stuff, and we call that stuff resources. We suppose
the resources arrive in different types, which we call commodities. We index the set
of all commodities by 𝐿, where we suppose 𝐿 is nonempty and finite. (Abusively,
𝐿 will sometimes refer to the cardinality of the set of commodities, and this
should introduce no confusion.) Each commodity ℓ ∈ 𝐿 is a good or service that
the state can mobilize—e.g., steel, oil, labor, or fresh-cut flowers. In common
interpretations of models like this one, these commodities may be differentiated
not just by their physical properties but also their time of delivery, location of
delivery, or state of the world in which they are delivered. We will not consider
these interpretational complications here, but they are often important in practice.
In case 𝐿 = 1, the model collapses to one without across-commodity trade-offs.

Mobilization plans. The state’s decision is to decide how much steel, oil, labor,
and so on to mobilize to achieve its desired force. This is a decision about
investment, in the sense that the state is choosing to allocate resources to a
particular end. We refer to a particular decision about how to allocate resources
as a mobilization plan, encoded as a vector 𝑥 ∈ 𝑋 ≔ R𝐿

⩾0. We refer to the ℓ th
element of 𝑥 as 𝑥ℓ , which is the amount of commodity ℓ that the state mobilizes.

Invisible parameters. Naturally, the state does not make its decisions in a
vacuum; it must consider the world around it. In the interest of keeping things
simple, we will ignore several features likely to be relevant to the state’s decision-
making process. Of course, one cannot make an exhaustive list of all factors one
has ignored in a given model, but we can at least mention a few likely candidates.
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1. We will not include market conditions, most notably the prices of com-
modities. It seems obvious that the cost of mobilization depends in part
on these prices—indeed, a textbook approach might be something like

cost of mobilization at 𝑥 = ∑
ℓ

price of commodity ℓ × 𝑥ℓ .

The influence of such prices on costs will be left implicit.

2. We will not include the state’s endowment of resources, nor the territory
over which it has control (which influences those endowments). It is likely
the case that a state’s militarization technology depends on its endowment
of resources; for example, a state with a large endowment of coal may be
more competent at converting coal into force. The same may go for how the
state experiences costs when mobilizing resources. Again, the influences
of territory and endowments will be left implicit.

One can and should think of the influence of such factors, but for now, we will
think of these as invisible parameters influencing the two functions we define next.

1.3 The Technology of Militarization

We now turn to the state’s technology for converting resources into force. In
words, the state’s technology is a rule telling us how much force the state can
produce using a given mobilization plan. It is the machine that turns stone into
hatchets, bronze into shields, steel into tanks, and labor into soldiers. This is a
fundamental aspect of the state’s decision-making process, as it is the mechanism
by which the state converts resources into force, an important precursor to higher-
order concerns like power or security.

The relevance of such technologies predates the state system, as the ability to
convert resources into force is a fundamental aspect of human society once we
move past the hunter-gatherer stage. Historian Ian Morris (2014, p. 7) observes
that Stone Age societies were tiny and that violence among people was small in
scale. (Nevertheless, some 10–20% of all people who lived in Stone Age societies
died at the hands of other people.) We still see this in the anthropological record,
where the study of violence in contemporary hunter-gatherer societies has long
been a topic of interest. Ethnic groups vary in their propensity for violence;
anthropologist Ruth Benedict (1934) classified societies as either “Apollonian”
(authoritarian and warlike) or “Dionysian” (egalitarian and peaceful) based on
this propensity. As societies transitioned to the Neolithic era, they developed
agriculture, which allowed them to support larger populations. With larger
populations came more complex social structures, including the emergence of
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states. States developed technologies for mobilizing resources and converting
them into force, which allowed them to field larger armies and engage in more
complex forms of warfare. Thus, the technology of militarization has been a
fundamental aspect of human society for millennia.

The important role of technology, and particularly military technology, in
shaping the behavior of states is well-recognized in military history. In a se-
ries of influential works, military historian Martin van Creveld focuses on how
technological innovations have shaped the conduct of war (1991), with deeper
institutional ramifications thanks to advances in supply chains (2004) and com-
mand (1985). Military historian Geoffrey Parker (1996) argues that technological
innovations, such as the development of gunpowder and the printing press,
played a crucial role in shaping the behavior of states during the early modern
period. These technologies allowed states to field larger armies and engage in
more complex forms of warfare, which in turn influenced their strategic behavior.
Similarly, historian John Keegan (1978) emphasizes the importance of technology
in shaping the conduct of war, arguing that technological innovations have often
been the decisive factor in determining the outcome of battles and wars. Political
scientist Brian Downing (1993) goes so far as to argue that the military revolution
of the early modern period was a key driver not only in the development of the
state as we know it, but in democracy as well. And perhaps most audaciously
of all, historian Priya Satia (2018) argues that the military revolution was itself
a driver of the industrial revolution, rather than the other way around as is
commonly supposed.

These handful of works are far from exhaustive, but they illustrate the cen-
trality of technology in shaping the behavior of states. To capture this in our
model, we define the state’s technology as a function, imposing several palatable
properties on its shape.

4 Definition
The state’s militarization technology is a function

𝜏 ∶ 𝑋 ⟶ 𝑀.

We assume 𝜏 possesses the following properties:

1. Continuity (C𝜏): 𝜏 is continuous;

2. Ray Surjectivity (R𝜏): there exists a point 𝑣 ∈ 𝑋 such that the map

𝑡 ⟼ 𝜏(𝑡𝑣) ∶ R⩾0 ⟶ 𝑀

is continuous, strictly increasing, and unbounded;
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3. Weak Monotonicity (M̃𝜏): 𝜏 is weakly increasing in all commodities; and

4. Log-Concavity (L̃𝜏): the map

𝑥 ⟼ log (1 + 𝜏(𝑥))

is concave.4

We denote the set of all such functions by T .

The state’s technology is a simple machine. Mathematically speaking, it does
little more than input a mobilization plan and output a scalar quantity of force.
We impose four requirements on how the machine performs this task:

1. small changes in the mobilization plan must yield small changes in the
force level;

2. any force level must be achievable by some mobilization plan;

3. no good hinders the production of force, and any force level may be
augmented by adding more of some good; and

4. the force level does not experience returns to scale too quickly.

The set of functions T —a function space—gathers all technologies that satisfy
these properties. It is a space of possibilities, constrained solely by its domain,
codomain, and the structural properties we have imposed.

The function space T contains many familiar forms of production functions.
For example, the well-known Cobb-Douglas production function

T ∋ 𝜏(𝑥) = 𝐴∏
ℓ∈𝐿

𝑥
𝛽ℓ
ℓ

where 𝐴 > 0 and 𝛽ℓ ∈ (0, 1) with ∑ℓ∈𝐿 𝛽ℓ ⩽ 1, satisfies all four properties and is
therefore an element of T . Similarly, the Constant Elasticity of Substitution (CES)
production function

T ∋ 𝜏(𝑥) = 𝐴 (∑
ℓ∈𝐿

𝛾ℓ 𝑥
𝜌
ℓ )

𝜎
𝜌

,

4We use the term “log-concavity” here in a nonstandard way. Ordinarily log-concavity refers
to functions 𝑓 such that log( 𝑓 (𝑥)) is concave. Here, we use log(1 + 𝜏(𝑥)) to ensure that the
function is well-defined at 𝜏(𝑥) = 0. Many a regression-runner has been burned by the logarithm’s
misbehavior at zero, and nearly all of them remedy this by adding one inside the logarithm—
despite all the good statistical reasons not to. It is with a profound sense of solidarity that we
follow suit.
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where 𝐴 > 0, 𝛾ℓ > 0, 𝜎 ∈ (0, 1], and 𝜌 ⩽ 1 with 𝜌 ≠ 0, also satisfies all four
properties and is an element of T . We take as canonical a function reminiscent
of the logarithmic utility function common in economics:

T ∋ 𝜏(𝑥) = ∑
ℓ∈𝐿

𝛽ℓ log (1 + 𝑥ℓ) ,

where 𝛽ℓ > 0 and ∑ℓ∈𝐿 𝛽ℓ = 1. This function is particularly convenient for
quantitative work, as we will see later. But what matters is not the specific form
of any one technology, but rather the family of all technologies satisfying our
structural properties.

1.4 The Cost of Militarization

The second major component of the state’s decision-making environment is the
cost the state experiences when mobilizing resources. This is no less fundamental
than the state’s technology, as the state must weigh the benefits of mobilization
against the costs. Despite its massive importance, the cost of militarization is far
less studied than the technology of militarization. In a tremendous contribution
to an understudied problem, Rosella Cappella Zielinksi (2016) studies how states
finance their militarization, finding that states rely on a variety of methods,
including taxation, borrowing, and printing money. Her work highlights the
complexity of the cost of militarization, which likely depends on a variety of
factors, including the state’s fiscal capacity, the structure of its economy, and
the political environment in which it operates. As such, one useful way to think
about the cost of militarization is as a suite of channels sending resources in 𝑋 to
costs in R. Certain commodities hit different channels more heavily than others;
for example, conscripted labor may impose political costs, while oil may impose
economic costs, while printing money may impose inflationary costs. These costs
may be felt more at home, as Cappella Zielinski emphasizes, or abroad—say, in
the form of international indebtedness as studied by Jennifer Siegel (2014).

But the notion of cost ought to transcend mere dollars and cents, which is
difficult when the current order of magnitude for war costs is in the trillions
of American dollars (Stiglitz and Bilmes, 2008). Militarization imposes diverse
costs—economic, political, social, and environmental—that extend beyond imme-
diate fiscal burdens. Conscription may generate political and social strain through
inequality and contestation (Leander, 2004; Kriner and Shen, 2016; Horowitz and
Levendusky, 2011; Asal, Conrad and Toronto, 2017; Levi, 1996). Debt and other
war-financing mechanisms can create long-term fiscal and political distortions
(Cappella Zielinski and Poast, 2024; Flores-Macías and Kreps, 2015; Slantchev,
2012; Mosley and Rosendorff, 2023; Siegel, 2014). Beyond these material costs,
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militarization produces ecological and social externalities: the environmental
damage and carbon emissions associated with military activity (Crawford, 2022),
and the gendered restructuring of labor, identity, and care work that accompany
war and militarism (Enloe, 2000). Of course, these channels are neither exhaus-
tive nor mutually exclusive, and despite their diversity, they all contribute to the
overall cost of militarization.

Taken together, these literatures suggest that militarization imposes a multi-
dimensional structure of costs. Each channel—fiscal, political, social, ecological—
translates mobilization into a different kind of strain on the state. To capture
this idea abstractly, we represent the state’s experience of mobilization as a cost
function: a mapping from a mobilization plan in 𝑋 to a scalar measure of cost
in R. This formalization does not privilege any single source of cost but instead
provides a general framework within which particular mechanisms—taxation,
conscription, borrowing, or social disruption—can be modeled as components
of a unified cost surface.

5 Definition
The state’s cost function is a function

𝜅 ∶ 𝑋 ⟶ R.

We assume 𝜅 possesses the following properties:

1. Continuity (C𝜅): 𝜅 is continuous;

2. Centeredness (0𝜅): 𝜅(0) = 0;

3. Coerciveness (O𝜅): 𝜅(𝑥) → ∞ as ∥𝑥∥ → ∞;

4. Strict Monotonicity (M𝜅): 𝜅 is strictly increasing in all commodities; and

5. Strict Exp-Convexity (L𝜅): the map

𝑥 ⟼ exp (𝜅(𝑥))

is strictly convex.

We denote the set of all such functions by K.

The state’s cost function is another simple machine. Mathematically speaking, it
inputs a mobilization plan and outputs a scalar quantity of cost. We impose five
requirements on how the machine performs this task:
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1. small changes in the mobilization plan must yield small changes in the
cost;

2. mobilizing nothing incurs no cost;

3. mobilizing more and more resources eventually becomes prohibitively
expensive;

4. mobilizing more of any good always increases the cost; and

5. the cost does not experience returns to scale too quickly.

The set of functions K—another function space—gathers all cost functions that
satisfy these properties. It is a space of possibilities, constrained solely by its
domain, codomain, and the structural properties we have imposed.

Once again, the function space K contains many familiar forms of cost
functions. Canonical among these is the familiar linear cost function

K ∋ 𝜅(𝑥) = 𝑞 ⋅ 𝑥 = ∑
ℓ∈𝐿

𝑞ℓ 𝑥ℓ ,

where 𝑞 ∈ R𝐿
>0 is a vector of prices for each commodity. This function satisfies

all five properties and is therefore an element of K. Another familiar form is the
quadratic cost function

K ∋ 𝜅(𝑥) = 𝑥
⊤
𝑄𝑥,

where 𝑄 ∈ R𝐿×𝐿 is a positive definite matrix. This function also satisfies all
five properties and is an element of K. It’s worth noting that there exist strictly
concave cost functions as well—they need only be “less concave than log” to
satisfy the exp-convexity property. For example, the function

K ∋ 𝜅(𝑥) = ∑
ℓ∈𝐿

𝛽ℓ (1 − 𝑒
−𝑥ℓ ) ,

where 𝛽ℓ > 0 and ∑ℓ∈𝐿 𝛽ℓ = 1, satisfies all five properties and is an element of K.
Once again, what matters is not the specific form of any one cost function, but
rather the family of all cost functions satisfying our structural properties.

1.5 The State’s Production Problem

We have now defined the two major components of the state’s decision-making
environment: the state’s technology for converting resources into force, and
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the state’s cost of mobilizing resources. These represent the primary data that
the state must consider when deciding how to mobilize resources to achieve its
desired force. Though they are functions housed in function spaces, they are also
the parameters of the state’s decision-making environment.

But how do these data cohere? Naturally, we consider the organization of
the production of force as a decision problem, where the state must choose a
mobilization plan that minimizes the costs of mobilization while achieving its
desired force level. This is the state’s production problem, which we now define.

6 Definition
Given a desired force level 𝑚 ∈ 𝑀, a militarization technology 𝜏 ∈ T , and a cost
function 𝜅 ∈ K, the state’s production problem is

min
𝑥∈𝑋

𝜅(𝑥) subject to 𝜏(𝑥) = 𝑚. SPP (𝑚, 𝜏, 𝜅)

SPP (𝑚, 𝜏, 𝜅) is the star of the show, the choice that makes a state a state in this
most primitive sense of the word. This humble minimization problem is the most
basic expression of the foundational decisions in organizing the production of
force. It points toward the answer to the “how” question of militarization: given
a desired force level like 𝑚∗

𝑖 from Game 1, how does State 𝑖 mobilize resources
to produce it? The state chooses a mobilization plan 𝑥 ∈ 𝑋 that minimizes its
cost of mobilization 𝜅(𝑥) while achieving the desired force level 𝜏(𝑥) = 𝑚.

Because we have been quite broad in our definitions of technologies and
costs, the state’s production problem is a general object that can be applied to a
wide variety of contexts. 𝜏 might be good at converting stone, steel, or enriched
uranium into force, and 𝜅 might demonstrate extreme sensitivity to the price of
labor, or horses, or oil. Large or small, capitalist or socialist, ancient or modern,
democratic or authoritarian, rich or poor—all states must solve the same basic
problem: how to mobilize resources to achieve a desired force level at the lowest
possible cost, where we recall that this cost is rather broadly construed.

1.6 The Currying Trick

But solving SPP (𝑚, 𝜏, 𝜅) is insufficient for purposes of characterizing the state,
given the way the story began in Game 1. We need to know how the state
will mobilize resources given a demanded force level as derived from strategic
considerations. We therefore do not merely want to solve SPP (𝑚, 𝜏, 𝜅) for fixed
𝑚, 𝜏, and 𝜅; rather, we seek a function

𝜋𝜏,𝜅 ∶ 𝑀 ⟶ 𝑋
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that tells us how the state will mobilize resources given any desired force level.
This is a policy function, as it prescribes the state’s mobilization plan for any
desired force level. To construct this function, we employ a standard technique
from functional analysis called currying.5 Currying is a method for transforming
a function that takes multiple arguments into a sequence of functions that each
take a single argument. In our case, we can curry the state’s production problem
to obtain the desired policy function.

7 Definition
Given a militarization technology 𝜏 ∈ T and a cost function 𝜅 ∈ K, the state’s policy
function is the map

𝜋𝜏,𝜅 ∶ 𝑀 ⟶ 𝑋

defined by

𝜋𝜏,𝜅(𝑚) ∈ argmin
𝑥∈𝑋

𝜅(𝑥) subject to 𝜏(𝑥) = 𝑚.

The set of all such functions is denoted by PT ×K ≔ {𝜋𝜏,𝜅 ∶ 𝜏 ∈ T , 𝜅 ∈ K}.

The policy function 𝜋𝜏,𝜅 is the solution to the state’s production problem for
all desired force levels 𝑚 ∈ 𝑀. It tells us how the state will mobilize resources
given any desired force level, given its technology 𝜏 and cost function 𝜅. The
set PT ×K is the family of all such policy functions, generated by all possible
combinations of technologies and cost functions. This family is the main object
of interest in this paper, as it tells us exactly how a given force level is produced
given characteristics encoded in 𝜏 and 𝜅. It is, for our purposes, the set of all
states.

Needless to say, states do thing other than solve SPP (𝑚, 𝜏, 𝜅). They govern,
tax, legislate, police, and adjudicate; they build roads, schools, and hospitals;
they provide public goods and services; they regulate markets and economies;
they interact with other states diplomatically and militarily. All of these activities
are important, but they are not the focus of this paper. Our focus is on the
state’s production of force, and the family of policy functions PT ×K captures this
aspect of state behavior in a general and flexible way. Whether from above—as
in structural IR theories like Waltz’s—or from below—as in bellicist conceptions
of the state like Tilly’s—the state’s production of force is a foundational aspect

5Currying is named for logician Haskell Curry, who formalized the technique in the 20th
century. But the idea is older, dating to Frege and Church in the late 19th and early 20th centuries.
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of its existence. In studying the family of policy functions PT ×K, we study this
foundational aspect in a general and flexible way. We do so in a way, it is hoped,
that will be useful in the study of these other crucial state functions as well.

2 The Structure of States

In the previous section, we introduced a simple cost minimization model de-
signed to represent the basic problem of militarization. The modeling pro-
cess culminated in Definition 6, which defined the state’s production problem
SPP (𝑚, 𝜏, 𝜅) in terms of a desired force level 𝑚 ∈ 𝑀, a militarization technol-
ogy 𝜏 ∈ T , and a cost function 𝜅 ∈ K. In this section, we turn our attention to
the solutions to SPP (𝑚, 𝜏, 𝜅).

2.1 Three Basic Questions

When faced with an optimization problem like SPP (𝑚, 𝜏, 𝜅), three questions
naturally arise. The first two relate to whether the problem is well-posed:

1. Existence: does it admit at least one solution? If SPP (𝑚, 𝜏, 𝜅) does not
admit a solution, then there is no way for the state to achieve its desired
force level. This would be a serious problem, as it would imply that the
state is unable to achieve its most basic goal.

2. Uniqueness: if it admits a solution, is this solution unique? If there are
multiple solutions, then the state faces a second choice that, by definition,
cannot be determined by the optimization problem itself. This multiplicity
represents the limit of the model’s precision, the modeler’s control.

These questions are important, but in the present context they are more means
than ends. Let us dispatch them without dawdling.

8 Lemma
For all (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T ×K, SPP (𝑚, 𝜏, 𝜅) admits a unique solution. [Proof .]

Thus, the two concerns just raised are resolved.
The third question that arises when faced with an optimization problem is

both more substantive and more capacious:

3. Stability: how does the solution change as the parameters of the problem
change? Do changes in the desired force level, the militarization technology,
or the cost function lead to changes in the solution? If so, are these changes
mild or drastic? Do any patterns emerge in relating the data to the solution?
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Here begin the questions of comparative statics. But in the background lurks
a subtle and fascinating problem: two of the parameters in SPP (𝑚, 𝜏, 𝜅) are
themselves functions. What does this subtlety mean for the stability of the
solution? How can we meaningfully speak of the solution as a function of the
data, when the data is itself functional and infinite-dimensional?

Put differently: what sort of information do these independent variables
carry? The desired force level 𝑚 ∈ 𝑀 ≔ R⩾0 is a scalar, a simple non-negative
number. It is easy to formulate questions like

Will the amount of steel needed to produce a given force level increase
or decrease as the force level increases? If so, by how much?

This is because R⩾0 includes all sorts of structure that we take for granted, both
theoretically and empirically. For example, it possesses an order structure, so the
word “increase” makes sense; similarly, it possesses a metric structure, so the
words “by how much” make sense. But what about the militarization technology
𝜏 ∈ T and the cost function 𝜅 ∈ K? What sort of structure do they possess?
How can we formulate questions about their behavior?

The most basic question is: do the solutions to Problem SPP (𝑚, 𝜏, 𝜅) change
continuously as the data changes? We therefore need to equip the function spaces
T and K with enough structure that we can make sense of continuity. This is a
topological problem, topology being the branch of mathematics concerned with
continuity and convergence. In the present context, we are interested in the
topology of function spaces, which is a rich and fascinating subject in its own
right. While the formal machinery is developed in the appendix, the core intuition
is simple—and happily, it is spatial in nature. We equip the set of technologies T
with a function that tells us how “close” two technologies are. This function is
called a metric, and it works just like the familiar distance function on R. Under
the metric we define here, two technologies are close if they send all mobilization
plans to force levels that are close. For example, the functions

𝜏0(𝑥) = ∑
ℓ∈𝐿

log (1 + 𝑥ℓ) and 𝜏1(𝑥) = ∑
ℓ∈𝐿

log (1 + (1 ± 𝜀)𝑥ℓ)

are close if 𝜀 is small, because they send similar mobilization plans to similar
force levels. We can think of this creating an 𝜀-ball around 𝜏0 that contains 𝜏1,
just as we do with points in R when we speak of open intervals like (−𝜀, 𝜀). The
cost functions K are equipped with a similar metric, which tells us how close
two cost functions are. For example, the functions

𝜅0(𝑥) = 𝑞 ⋅ 𝑥 and 𝜅1(𝑥) = (1 ± 𝜀)𝑞 ⋅ 𝑥, where 𝑞 ∈ R𝐿
>0 ,
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are close if 𝜀 is small, because they charge similaramounts for similarmobilization
plans. To be sure, the problem at hand creates some complications—the interested
reader is referred to Appendix A—but the basic idea is clear. Remarkably, this
simple intuition allows us to ask questions like: does the solution to SPP (𝑚, 𝜏, 𝜅)
change continuously as force levels, technologies, and costs change? Can we, in
fact, obtain well-defined comparative statics in this more general setting?

It turns out that we can.

9 Lemma
The solution to SPP (𝑚, 𝜏, 𝜅) varies continuously with 𝑚, 𝜏, and 𝜅. [Proof .]

This result is the first step in understanding the structure of the state’s production
problem, as it suggests that we can learn about the solution by studying the data.
We just noted that topology is the study of continuity and convergence. But
it is also the study of structure, namely of the properties that are preserved
under continuous transformations. We refer to such properties as invariants,
and they are the key to understanding the structure of the state’s production
problem—and its solutions.

Moving toward comparative statics, we next observe that the policy function
𝜋𝜏,𝜅 defined in Definition 7—that is, the curried function mapping technologies
and cost functions to mobilization plans—is itself continuous as a function of
technologies and cost functions.

10 Corollary
The policy function 𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 varies continuously with 𝜏 and 𝜅. [Proof .]

Thus, not only does the solution to SPP (𝑚, 𝜏, 𝜅) vary continuously with the
data, but the entire policy function does as well. It is worth noting that these
data—functions themselves—encode infinite-dimensional information. This
makes the continuity results all the more powerful, as they tell us that even in
this infinite-dimensional setting, the solutions behave nicely as the data change.

Finally, we report three key structural results about the policy function 𝜋𝜏,𝜅.

11 Lemma
The policy function 𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 satisfies:

1. Centeredness (0𝜋): we have

𝜋𝜏,𝜅(0) = 0;
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2. Coerciveness (O𝜋): we have

lim
𝑚→∞

∥𝜋𝜏,𝜅(𝑚)∥ = ∞; and

3. Weak Monotonicity (M̃𝜋): we have

𝑚1 ⩽ 𝑚2 ⟹ 𝜋𝜏,𝜅(𝑚1) ⩽ 𝜋𝜏,𝜅(𝑚2),

where the inequality on the right-hand side is taken component-wise. [Proof .]

These properties are important because they tell us that the policy function
behaves in ways that are both economically sensible and mathematically tractable.
Without them, it would be difficult to draw meaningful conclusions about the
structure of the state’s production problem. With them in hand, we may proceed
to the main event: understanding the structure of the data and the solutions they
generate.

2.2 The Structure of the Data and the Solutions

T and K are sets of functions, which naturally raises the question of how to
compare them. In the spirit of systemic theory as discussed in the introduction,
we seek to understand whether they reflect any essential sameness—a question
of equivalence. Two objects are equivalent if they are the same in some sense, and
the study of equivalence relations is a powerful tool for understanding structure.
Identical objects are always equivalent, but the converse is not true: equivalent
objects are not always identical. For example, the number 1/2 is both identical
and equivalent to itself, but it is only equivalent to the number 2/4. They are not
identical, but they are equivalent because they represent the same quantity. In
much the same way, two militarization technologies may yield different numerical
outputs for the same mobilization plan, yet still represent structurally equivalent
approaches to force production. In the present context, we are interested in
understanding whether the militarization technologies and cost functions are
equivalent in some sense and, if they are, just how strong this sense of equivalence
is.

In the previous section, we spent considerable time discussing just how little
has been assumed in defining T and K. These are large and diverse sets, and it
is not immediately obvious how much sameness we can expect to find among
their elements. Rather than focusing on local properties or on the tedious details
of equivalence relations for particular sub-classifications of functions, we take a
more global perspective. We are interested in the structure of the data—literally
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the shape of the sets T and K. This is a question of homotopy, which is the study
of continuous transformations of spaces. The reader may be familiar with the old
quip that a topologist cannot distinguish a coffee cup from a doughnut, because
both of them possess a single hole. That single hole is the invariant that allows
the topologist to say that the two objects are the same: they are not identical, but
they are equivalent in the sense of homotopy. This sense of equivalence binds
them together but distinguishes them from a ball, which has no holes, and from
a pretzel, which has more than one.

We are interested in the homotopy of the sets T and K because it tells us
how much sameness we can expect to find among their elements. If, for example,
T is homotopy equivalent to two disconnected spaces, then we can expect to
find two fundamentally different types of militarization technology: one that is
structurally similar to the first space and one that is structurally similar to the
second. If K is homotopy equivalent to a single connected space, then we can
expect to find a single type of cost function that is structurally similar to all others.
Moreover, the shape of these individual spaces may provide even deeper insights
into the structure of the data.

Figure 1: Contractible (left) versus non-contractible (right) spaces.

In terms of homotopy, the most extreme form of sameness is contractibility.
Intuitively speaking, a space is contractible if it can be shrunk to a point without
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tearing or gluing. For example, consider the set [−1, 1], a simple compact interval
centered around zero. Now imagine that we pinched the interval from both ends
and pulled the ends together until they met at the center point 0. This pinching
and pulling is a continuous deformation, and it shrinks the entire interval to
the single point 0; hence, this is a contractible space. In contrast, no rubber
band could possibly deform the doughnut just mentioned into a single point,
so the doughnut is not contractible. Figure 1 illustrates the difference between
a contractible space (left) and a non-contractible space (right). At left, we see a
blob-like shape with arrows pointing inward toward a central point. Any point in
this shape can be continuously deformed to the central point, so the entire shape
can be shrunk to that point. And, as it turns out, if a space can be contracted to
such a point, it can be contracted to any point. Conversely, the shape at right is
an annulus, a ring-like object with a hole in the middle. No matter how we try to
deform this shape, the hole remains; there is no way to shrink the entire shape
to a single point. Put differently, we can use a point to represent the left shape,
but the smallest representation of the right shape must include the hole—i.e., it
must be a ring, not a point.

And this is the question we now ask about the function spaces T and K:
are they contractible? Can they be represented by a single point, or do they
possess holes or other more complicated structure? It turns out that the classical
assumptions given in Definitions 4 and 5 are strong enough to guarantee that
both function spaces are contractible.

12 Lemma
The function spaces T and K are contractible. [Proof .]

Thus, the militarization technologies and cost functions are structurally equiva-
lent in the strongest possible sense. Not doughnuts, nor pretzels, nor even simple
rings; mere points. This obtains despite the fact that neither log-concavity nor
exp-convexity are closed under addition or scalar multiplication, so neither T
nor K is a vector space.6

We therefore have shown that the data are structurally simple to the point
of triviality. As promised, this simplicity has deep implications for the structure
PT ×K, the set of solutions to the family of problems those data generate. In the
main result of this section, we learn that the set of states is also contractible.

6Since both of these classes relate closely to quasiconcavity and quasiconvexity, it is worth
noting that analogous families defined by those properties are likewise contractible, even though
their governing properties fail to preserve addition. The homotopies constructed in the Proof of
Lemma 12 follow more general, non-linear paths that do not rely on vector structure.
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13 Proposition
PT ×K strongly deformation retracts onto the point

𝜋0(𝑚) = (exp (𝑚
𝐿
) − 1) 1,

where 1 ∈ R𝐿 is the vector of ones. [Proof .]

In the name of concreteness, we provide an explicit basepoint for the contractibil-
ity of PT ×K, though this is not strictly necessary. If a space can be contracted
to some point, then it can be contracted to any point; truly, any point is the
center of the universe of PT ×K. The basepoint given happens to be a particu-
larly easy-to-derive solution to a particularly easy-to-solve instance of the state’s
production problem. It also happens to be aesthetically pleasing, performing
the task of sending force demands to resource investments in a particularly sim-
ple way. It sends the zero force demand to the zero resource investment and
divvies exponentially-increasing resource investments symmetrically across all
commodities as the force demand increases. Highly unrealistic from an empir-
ical perspective, it nevertheless serves as a worthy representative of the set of
states. Happily, it does not matter which point we choose as the basepoint for
the contractibility of PT ×K; once we know the space is contractible, we know it
can be shrunk to any point. We record this fact in the following corollary.

14 Corollary
PT ×K can be strongly deformation retracted onto any point.

Thus, the set of all states is so structurally simple that it can be represented by a
single point—and indeed, by any point.

Proposition 13 is the main structural result of this section, and it has deep
implications for our understanding of states. But, its full significance becomes
clear only when we consider the various ways in which states can be considered
the same. In the next subsection, we work our way through several corollaries of
Proposition 13, each of which reveals a different aspect of the structure of states.
These corollaries are in ascending order of strength, each one building on the
last. As such, they form a ladder of sameness, each rung revealing a deeper layer
of equivalence among states.
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2.3 The Ladder of Sameness

This subsection presents four corollaries of Proposition 13, each of which reveals
a different aspect of the structure of states. Before considering the rungs in detail,
we quickly summarize the ladder. Proposition 13 implies that the set of all states
ignores variation in:

1. Sorts: qualitative distinctions among states are necessarily second-order to
their sameness as producers of force (Corollary 15);

2. Transformations: any two states can be transformed into one another through
a continuous deformation (Corollary 16);

3. Histories: any two paths between the same pair of states are continuously
deformable into one another (Corollary 17); and

4. Information: any function defined on the set of states is homotopic to a
constant function (Corollary 21).

Thus, when we say that all states are the same, we mean this in four increasingly
strong senses. Let us now climb the ladder.

Qualitative distinctions among states are necessarily second-order to their
sameness as producers of force. The first corollary is that the set of states is
connected, which we state like so:

15 Corollary
PT ×K cannot be written as the union of two disjoint non-empty open sets.

Visually, this means that the set of states is a single blob-like object without holes
or disconnected pieces. Figure 2 illustrates the difference between a connected
space (left) and a disconnected space (right). At left, we see a single blob-like
shape; no matter how we try to slice it, we cannot separate it into two pieces
without tearing it apart. At right, we see two separate blob-like shapes; no matter
how we try to connect them, they remain separate. This is the difference between
connected and disconnected spaces. In the event that PT ×K were disconnected,
we would have two fundamentally different types of states, each of which we
might call a sort of state. This would be a first-order distinction, a primary way
of dividing the set of states in response to their basic task of producing force. But
Corollary 15 tells us otherwise: there is only one sort of state. Any distinctions
we draw must therefore be second-order. This result does not deny variation,
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Figure 2: Connected (left) versus disconnected (right) spaces.

but it does demand that variation be interpreted through the lens of a shared
structural core. This is the first layer of sameness that the contractibility of states
reveals.

Of course, qualitative distinctions can and should be drawn among states.
Democracies and autocracies, capitalist and socialist states, and so on—these are
all distinctions that are both meaningful and important. But these distinctions
are necessarily second-order to the sameness of states as producers of force. Put
differently, if one has a classification structure𝑃 that divides states into categories,
then 𝑃 must be attached to a partition ofPT ×K into connected components. More
formally a classification of states is a map

PT ×K ∋ 𝜋 ⟼ 𝑃(𝜋) ∈ Π,

where Π is a partition of PT ×K. Figure 3 illustrates such a classification structure:
four different subclasses of states are drawn within a single connected component.
This is the only way to draw meaningful qualitative distinctions among states
without contradicting Corollary 15. Thus, distinctions among states either need
to live outside of this component of the ontology of states or they need to provide
further information about how those distinctions manifest within the connected
component.
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Figure 3: Illustration of a classification structure 𝑃 dividing states into categories within con-
nected components.

Remarkably, this partitioning logic helps us see the structuralist ideal as
a limiting case of a more general framework. Classification structures, being
partitions, can be refined or coarsened, and this allows us to put them into a
hierarchy. One classification scheme might divide states into democracies and
autocracies, while a finer scheme might divide them into presidential democra-
cies, parliamentary democracies, military autocracies, and one-party autocracies.
As we refine the classification structure, we approach the structuralist ideal: a
classification structure that divides states into singleton sets. In this limiting case,
each state is its own category, and the classification structure provides no further
information beyond the identity of the states themselves. In the other direction,
we can coarsen the classification structure until it divides states into a single
category: PT ×K itself. This is the structuralist ideal in its purest form: all states
are the same, and no distinctions are drawn among them. Functions sending
classification schemes to outcomes of interest can then be assessed in terms like
monotonicity or continuity with respect to refinements and coarsenings of the
classification structure. Metatheoretically, this provides a way to situate struc-
turalist theorizing within a broader framework of classification structures. And
since PT ×K is connected, any such classification structure must be second-order
to the sameness of states as producers of force.

Any two states can be transformed into one another through a continuous
deformation. The second corollary, deeply related to the first, is that the set of
states is path-connected, which we state like so:
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16 Corollary
For all states 𝜋0 ,𝜋1 ∈ PT ×K, there exists a continuous map

𝛾 ∶ [0, 1] ⟶ PT ×K

such that 𝛾(0) = 𝜋0 and 𝛾(1) = 𝜋1.

This is a somewhat stronger way of saying that the set of states is connected, but
now it tells us the positive side of the story. Not only are there no fundamental
distinctions among states, but any two states can be transformed into one another
through a continuous deformation. Figure 4 illustrates the difference between a

0

1

0 1

Figure 4: Path-connected (top) versus non-path-connected (bottom) spaces.

path-connected space (top) and a non-path-connected space (bottom). At top, we
see a single blob-like shape; no matter which two points we pick, we can draw a
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continuous path between them without leaving the shape. Conversely, at bottom,
we see two separate blob-like shapes; if we pick one point from each shape, there
is no continuous path between them that remains within the shape.

This might seem like an arcane and abstract result if we think about how
to turn Djibouti into Denmark, but it is much more powerful when we think
about both the evolution of states over time and the emulation of states by other
states. In terms of the former, it tells us that the transformation of one state into
another is a continuous process; we might imagine the United States in 1776
as one state and the United States in 2025 as another and 𝛾 as the continuous
transformation that takes us from one to the other as time passes. In terms of the
latter, Corollary 16 tells us that states can learn from one another in a continuous
way; we might imagine a state attempting to emulate the militarization style of
another state, much as South American states did with Prussian militarization in
the 19th century (Resende-Santos, 2007); again, this emulation can be seen as a
continuous process. This is the second layer of sameness that the contractibility
of states reveals: the sameness liberating the process of continual evolution and
emulation.

Again, discontinuous transformations are possible and meaningful, but they
are not woven into the fabric of the state system. If flashpoints and tipping points
are to be found, they must be sought in the second-order distinctions that divide
the set of states. Formally, a discontinuous transformation of states might be
represented as a flashpoint moment 𝜁 ∈ (0, 1) and two evolution functions

𝛾0 ∶ [0, 𝜁] ⟶ PT ×K and 𝛾1 ∶ [𝜁, 1] ⟶ PT ×K ,

such that 𝛾0(𝜁) ≠ 𝛾1(𝜁). This is an evolution of states that is not continuous,
characterized by a moment of fundamental change encoded in the parameter 𝜁.
Naturally, more complicated structures can be imagined—multiple flashpoints,
wrinkly evolution functions, and so on—but the basic point remains: one can
envision discontinuous transformations, but they must be included in some
second-order structure.

The space of states does not necessitate path dependency. The third corollary
is that the set of states is simply connected, which we state like so:

17 Corollary
For all states 𝜋0 ,𝜋1 ∈ PT ×K and all continuous paths 𝛾𝛼 , 𝛾𝛽 ∶ [0, 1] → PT ×K
such that 𝛾𝛼(0) = 𝛾𝛽(0) = 𝜋0 and 𝛾𝛼(1) = 𝛾𝛽(1) = 𝜋1, there exists a continuous
homotopy

𝐻 ∶ [0, 1] × [0, 1] ⟶ PT ×K

27



such that 𝐻(0, ⋅) = 𝛾𝛼 and 𝐻(1, ⋅) = 𝛾𝛽.

Not only are all states the same in that all can be linked via a continuous path, but
the paths themselves can be continuously deformed into one another. Figure 5

Figure 5: Simply connected (left) versus non-simply connected (right) spaces.

illustrates the difference between a simply connected space (left) and a non-simply
connected space (right). At left, we see a single blob-like shape; no matter which
two paths we pick between the same two points, we can continuously deform
one path into the other without leaving the shape. Conversely, at right, we see a
ring-like shape; if we pick one path that goes around the hole and another path
that goes the other way, there is no continuous deformation between them that
remains within the shape.

This might seem like an even more arcane and abstract result than the last,
but it too has powerful implications when we think about both the evolution of
states over time and the emulation of states by other states. In particular, it gives
us a new perspective on path dependency. Path dependency is often understood
as the idea that the history of a state matters for its present and future. One way
of saying this might be:

Two paths that link the same start and end points may nevertheless
lead to different outcomes.
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But Corollary 17 tells us that this is not quite right: if two paths link the same
start and end points, then they are homotopic relative to their endpoints, and
thus we think of them as essentially the same. Conversely, in the figure at right,
paths “to the left” of the hole are fundamentally different from paths “to the
right” of the hole; they cannot be continuously deformed into one another, and
thus we think of them as essentially different. This is what path dependency
looks like in a non-simply connected space.

We can think of this a little more formally using the language of differential
forms. Suppose 𝛾 ∶ [0, 1] → PT ×K is a path—representing, for example, the
temporal evolution of a state or the emulation of one state by another—and let
𝜔 be a piecewise-smooth 1-form on PT ×K that encodes infinitesimal changes in
payoff or cost.7 For two paths with common endpoints, define the difference in
their line integrals as

Δ(𝛾0 , 𝛾1; 𝜔) = ∫
𝛾0

𝜔 − ∫
𝛾1

𝜔 = ∮
𝛾0∗𝛾1

𝜔,

where 𝛾1 is 𝛾1 traversed in reverse and ∗ denotes concatenation. Thus, “path
dependence” here means that there exists a closed loop with nonzero circulation.
This leads us to the following lemma, which provides a useful test for path
dependence.

18 Lemma
For a piecewise-smooth 1-form 𝜔 on PT ×K, the following are equivalent:

1. Δ(𝛾0 , 𝛾1; 𝜔) = 0 for all paths 𝛾0 , 𝛾1 with common endpoints; and

2. ∮
ℓ
𝜔 = 0 for every piecewise-smooth loop ℓ in PT ×K.

This is simply a matter of applying definitions, so we omit the proof. The lemma
tells us that to check for path dependence, we need only check for nonzero
circulation around loops. But now we can bring in Corollary 17, which tells
us that all loops in PT ×K can be continuously contracted to a point. This has
powerful implications when combined with Poincaré’s lemma, which states that
closed forms are exact on simply connected domains.8 Poincaré’s lemma gives
us the following proposition:

7Explicitly, line integrals will be understood for 𝐶1 paths with additivity under concatenation
and sign reversal under reparameterization.

8By “exact,” we mean that there exists a function Φ such that 𝜔 = 𝑑Φ. Such a function is
called a potential function for the form 𝜔. It provides a scalar field whose gradient is given by 𝜔,
and thus is the concept to which conservative vector fields correspond. A classic example is the
gravitational field, which is the gradient of the gravitational potential.
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19 Proposition
If 𝑑𝜔 = 0 on PT ×K and PT ×K is simply connected, then there exists Φ ∶ PT ×K → R
such that

𝜔 = 𝑑Φ ⟹ ∫
𝛾
𝜔 = Φ(𝛾(1)) −Φ(𝛾(0)) for all paths 𝛾.

Hence any closed field is path independent on PT ×K.

In words, this means that if the 1-form 𝜔 is closed (i.e., 𝑑𝜔 = 0) and the space
of states is simply connected, then the line integral of 𝜔 along any path depends
only on the endpoints of that path. Thus, observed path-dependence can only
arise if 𝜔 is not closed somewhere. This contrapositive form is useful in that it
helps us to fully appreciate just how “outside” the model we must go to find
path dependence.

20 Corollary
If

∃𝛾0 , 𝛾1 such that Δ(𝛾0 , 𝛾1; 𝜔) ≠ 0,

then 𝑑𝜔 ≠ 0 on some subset of PT ×K—i.e., 𝜔 is not closed.

This is the third layer of sameness that the contractibility of states reveals: the
sameness that confines path dependence to arise only from second-order dis-
tinctions among states. Put differently, if we observe path dependence in the
evolution or emulation of states, it must reflect differences that are derivative
of—rather than constitutive of—their shared function as producers of force. For-
mally, such dependence appears only when the differential field 𝜔 defined on
the space of states is non-closed. To the extent that the statistics we compute
to characterize states—be they measures of governance, economic structure, or
social cohesion—can be represented as closed 1-forms on PT ×K, we can be sure
that they do not entail path dependence.

Future work should focus on applying cohomology theory to classify the
types of non-closed forms that might arise on PT ×K. Some initial details on the
subject will be relegated to a footnote.9

9Formally, our simple-connectedness results corresponds to a trivial first de Rham cohomology
group, 𝐻1

dR(PT ×K) = 0. Every closed 1-form on this space is therefore exact, and no topological
degrees of freedom exist for storing historical information. The “memory” of the system, if any,
must live in the field 𝜔 itself—in the particular political or institutional processes that make it
non-closed. In this sense, topology constrains the geometry of possible histories: the state system
cannot generate path dependence by shape alone.
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PT ×K carries no information beyond the fact that its elements solve Prob-
lem SPP (𝑚, 𝜏, 𝜅). The fourth and final corollary is a particular definition of
contractibility, which we state like so:

21 Corollary
Let 𝑌 be any nonempty space, and let 𝑓0 , 𝑓1 ∶ PT ×K → 𝑌 be continuous maps. Then
there exists a continuous map 𝐹 ∶ PT ×K × [0, 1] → 𝑌 such that 𝐹(⋅, 0) = 𝑓0 and
𝐹(⋅, 1) = 𝑓1.

In particular, any function 𝑓 ∶ PT ×K → 𝑌 is homotopic to a constant function.

This is the contractibility of PT ×K seen from the outside: not as an internal defor-
mation of the space, but as a statement about what any continuous observable
can do with it. If any two maps 𝑓0 , 𝑓1 can be deformed into one another, then
no continuous observable can stably separate points of PT ×K; any measured
difference can be washed out by a homotopy. In the limit, every observable
collapses to constancy.

Along these lines, we have the following corollary, which makes the point
more explicit.

22 Corollary
For any nonempty 𝑌, the homotopy set [PT ×K , 𝑌] contains a single element. Equiva-
lently, every continuous invariant 𝐼 ∶ PT ×K → 𝑌 is, up to homotopy, a constant.

This places the discussion in informational terms. Suppose we define 𝑓 to
assign each state a number, say the soldiers used to field a force set to 𝑚 = 1.
Then Corollary 21 and Corollary 22 together imply that 𝑓 is homotopic to a
constant. Neither quantitative nor qualitative structure can be extracted from
PT ×K alone beyond the fact that its elements solve SPP (𝑚, 𝜏, 𝜅). This is the final
layer of sameness revealed here: a domain that admits motion but no contrast,
measurement but no differentiation, a genuinely blank slate awaiting further
structure.

Assessment. We have built a logic of sameness. The global properties of T and
K—and the solutions they generate—yield a space of states that is connected,
path-connected, simply connected, and finally null-homotopic as a source for
observables. The result is both liberating and constraining. It is liberating in
permitting continual evolution and emulation: any state can be deformed into
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any other without tearing the fabric. It is constraining in fixing the terms on
which distinctions may be drawn: they cannot be sourced in the topology of
the state space. If differences are to appear, they must do so as second-order
features—through the fields we place upon the surface or through additional
structures not yet introduced.

Interpretive scope and bridge. It bears emphasis that these claims are formal
and conditional. They concern the topology of the model’s state space, not
the empirical world it seeks to illuminate. To say that PT ×K is contractible
is to say that, within this architecture, the space itself supplies no intrinsic
coordinates of difference or memory. Empirical heterogeneity, historical inertia,
and institutional specificity can—and will—enter, but only through additional
geometric or dynamical structure. Accordingly, we now turn from topology to
geometry. The next section asks what a good model of PT ×K should look like:
what properties it should preserve, what distortions it may justifiably introduce,
and what it might buy us in return. There we restrict attention to a tractable class
of technologies and costs, show that their solutions adequately represent the
ambient space, and uncover a stronger property than contractibility—convexity—
that equips the model with a richer, more usable shape.

3 Models of States

We just saw that the set of states PT ×K is contractible, a proposition loaded with
important implications for the structure of the bucket of states. As a topological
property, contractibility conveys deep structural information about the set, from
how connected it is to how much information it contains. However, it has little to
offer about the geometry of the set, save for the fact that the geometry is, in some
sense, unified and homogeneous. Philosophically satisfying though it may be,
contractibility is not especially helpful for modeling purposes. We therefore turn
our attention from topological considerations to geometric ones.

We would be well within our rights to begin modeling the set of states PT ×K
as it stands. However, now is a good time to think about what additional structure
we might be willing to tolerate in exchange for a clearer view of the geometry
of the set. One natural step is to impose additional regularity conditions on the
technologies and costs. To see why such conditions might be helpful, consider
what Game 1 might look like if we incorporated the primitives we have defined
so far.

23 Game
Two states, 𝑖 ∈ {1, 2}, simultaneously choose resource investments 𝑥𝑖 ∈ 𝑋 = R𝐿

+. Their
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payoffs are given by von Neumann-Morgenstern expected utility functions:

𝑈1(𝑥1 , 𝑥2) =
𝜆 (𝜏1(𝑥1))𝛼

𝜆 (𝜏1(𝑥1))𝛼 + (𝜏2(𝑥2))𝛼
(𝑉 − 𝑘 (𝑒𝜅1(𝑥1) + 𝑒

𝜅2(𝑥2) − 2)) ,

𝑈2(𝑥1 , 𝑥2) =
(𝜏2(𝑥2))𝛼

𝜆 (𝜏1(𝑥1))𝛼 + (𝜏2(𝑥2))𝛼
(𝑉 − 𝑘 (𝑒𝜅1(𝑥1) + 𝑒

𝜅2(𝑥2) − 2)) ,

where:10

1. 𝜆, 𝛼,𝑉 , and 𝑘 are as in Game 1;

2. 𝜏𝑖 ∈ T is State 𝑖’s technology; and

3. 𝜅𝑖 ∈ K is State 𝑖’s cost function.

In terms of the richness of the underlying political economy, Game 23 is an
upgrade over Game 1, as it incorporates the technologies and costs we have
defined so far, and it makes the choice variable something observable—-the
resource investment vector 𝑥𝑖—rather than the abstract military capability 𝑚𝑖 .
The contest success function runs on inputs that have been sent to a force-like
output through the technology, and the costs subtracted from the prize have been
sent to a value-like output through the cost function. Of course, this richness
comes at the expense of parsimony and clarity, as the game includes more moving
parts and the choice variables are more complex.

It also comes at the expense of tractability, as the additional complexity makes
it more difficult to analyze the game. We can at least provide general existence
results for equilibria—for example:

24 Proposition
Game 23 has at least one pure-strategy Nash equilibrium. [Proof .]

But beyond this, it is difficult to say much more without imposing additional
structure on what each 𝜏 and 𝜅 actually looks like. Any disciplined restriction
of PT ×K—that is, any way of specifying explicit functional forms for 𝜏 and 𝜅—
constitutes a model of the broader class of states. Introducing such structure is
not a matter of convenience alone: it changes what can be said about equilibria,
geometry, and even what it means for a “state” to be well-formed. This turns the
familiar act of modeling into a deeper methodological question.

Three issues immediately arise.
10The same disclaimer applies here as in Game 1: we set the contest outcomes to 𝜆/𝜆+1 and

1/𝜆+1 for the two States in case 𝜏1(𝑥1) = 𝜏2(𝑥2) = 0. The subsequent discontinuity in the utility
functions makes the proof of Proposition 24 a little trickier than usual.
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1. What intrinsic and relational properties should a good model of PT ×K
possess? How can we gain tractability without erasing the constraints that
make states distinctive in the first place?

2. Which distortions are tolerable, and which would destroy the correspon-
dence between the model and the ambient space? In other words, what
geometric or topological features must any faithful model preserve?

3. What insight compensates for any loss of fidelity? If a model smooths or
simplifies, what new perspective does that simplification reveal?

These questions frame the modeling problem: how to move from the abstract,
intractable class of all possible states to a structured, analyzable family that still
reflects its essence.

Topologically speaking, Proposition 13 has already given an extreme answer:
PT ×K is contractible, and thus representable by a single point. But while such a
representation is formally faithful, it is geometrically and substantively vacuous.
A single point cannot vary, and without variation there can be no explanation: no
difference in how useful one resource is under a given technology or how dear
another resource is in a given cost. The purpose of modeling is to make sense
of such variation—to describe how differences in technology and cost structure
shape behavior—and a single point can do none of that. To recover explanatory
power, we must look for a representation that preserves not just connectedness
but shape and variety.

This section addresses these questions by modeling the process of modeling
itself. We seek a structured subset ofPT ×K that is both tractable and topologically
faithful. This suggests two conditions for a successful model:

1. Tractability concerns, particular in light of the intended use case, suggest
that we need at least one degree of differentiability, else we will not be able
to study games like Game 23 in the usual manner; and

2. Adequacy concerns, given the structure we have already established, suggest
that we need the model to be homotopy equivalent to PT ×K, else we risk
losing the essential topological features of the ambient space.

Put differently, we need to balance quantitative considerations about differentia-
bility with qualitative considerations about topological structure.

To preview the results: we will indeed see that such a model exists. The
particular model we will construct is one in which the technologies and costs take
on especially simple functional forms, which we will call tame technologies and
costs. These tame functions will be shown to adequately represent the general
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functions by being homotopy equivalent to them. Moreover, we will arrive at
the tame states by using first-order information about regularized versions of the
general functions, which will allow us to characterize the geometry of the tame
states in traditional fashion. This means we will address both tractability and
adequacy, arriving at a model that is both analyzable and faithful.

3.1 The Model

It will be far easier to introduce the modeling process in stages. For any writer
with literary aspirations, there is a temptation to save the information meant for
the climax for the end; however, some of the steps will not make sense if we wait
until the end to introduce them. Let us therefore introduce the target model first,
and then work backward to see how we might arrive at it.

25 Definition
We say that a technology 𝜏 ∈ T is tame (T𝜏) if it takes the form

𝜏(𝑥) = 𝐴𝜏 ∑
ℓ∈𝐿

𝛽ℓ ⋅ log (1 + 𝑥ℓ) ,

where 𝐴𝜏 > 0 is a “scale” parameter and the vector of “input elasticities,”

𝛽 ∈ Δ𝐿 ≔ {𝑏 ∈ R𝐿
⩾0

»»»»»»»»»»
∑
ℓ∈𝐿

𝑏ℓ = 1} ,

witnesses 𝜏’s tameness.

Similarly, we say that a cost 𝜅 ∈ K is tame (T𝜅) if it takes the form

𝜅(𝑥) = 𝐴𝜅 ∑
ℓ∈𝐿

𝑞ℓ ⋅ 𝑥ℓ ,

where 𝐴𝜅 > 0 is a “scale” parameter and the vector of “input prices,”

𝑞 ∈ Δ𝐿 ≔ {𝑝 ∈ R𝐿
⩾0

»»»»»»»»»»
∑
ℓ∈𝐿

𝑝ℓ = 1} ,

witnesses 𝜅’s tameness.

We denote the sets of all tame technologies and costs by T [T] and K[T], respectively.
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The tame technologies and costs are both familiar and extraordinarily simple.
They have many desirable properties, including differentiability (indeed, smooth-
ness), concavity/convexity, and monotonicity. Their first and second derivatives
are extraordinarily easy to compute, work with, and interpret. They are easy to
bring to data and easy to use in models. In other words, they more than live up
to their name as tame functions. It would be wonderful news indeed if we could
show that these tame functions adequately represent the general functions we
have defined so far.

The question of this section therefore becomes: do T [T] and K[T] adequately
represent T and K, respectively? For starters, straightforward checking shows
that the tame functions are indeed members of their respective ambient spaces:

26 Lemma
The tame technologies and costs are elements of T and K, respectively.

We omit the proof, as it is a simple exercise in checking the definitions. So, the
tame functions are at least subsets of the general functions.

But there are many properties such subsets might have or lack, and we
just spilled much ink about the important topological properties of the general
functions. The one we cared the most about was contractability, which implied all
sorts of interesting notions of sameness among the states. Just to keep everything
above board, we should check whether the tame functions retain this property.
This is straightforward to do:

27 Lemma
The tame function spaces T [T] and K[T] are contractible.

To see this, consider the straightforward homotopies

𝐻𝜏(𝑡 , 𝜏) ≔ (1 − 𝑡) 𝜏 + 𝑡 (∑
ℓ∈𝐿

1
𝐿
⋅ log (1 + 𝑥ℓ)) ,

𝐻𝜅(𝑡 , 𝜅) ≔ (1 − 𝑡)𝜅 + 𝑡 (∑
ℓ∈𝐿

1
𝐿
⋅ 𝑥ℓ) ,

which send a given tame technology or cost to a particular “central” tame tech-
nology or cost. The central technology and cost have equal weights on all
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commodities and unit scale. For each commodity ℓ , the ℓ th component of the
homotopy takes the form

(1 − 𝑡)𝐴𝜏𝛽ℓ log (1 + 𝑥ℓ) + 𝑡
1
𝐿

log (1 + 𝑥ℓ) ,

(1 − 𝑡)𝐴𝜅𝑞ℓ 𝑥ℓ + 𝑡
1
𝐿
𝑥ℓ ,

so that the homotopies remain within the tame function spaces for all 𝑡 ∈ [0, 1]—
their scale terms become

𝐴𝜏(𝑡) ≔ (1 − 𝑡)𝐴𝜏 + 𝑡 ,

𝐴𝜅(𝑡) ≔ (1 − 𝑡)𝐴𝜅 + 𝑡 ,

and their weight terms become

𝛽ℓ(𝑡) ≔
(1 − 𝑡)𝐴𝜏𝛽ℓ + 𝑡

1
𝐿

(1 − 𝑡)𝐴𝜏 + 𝑡
,

𝑞ℓ(𝑡) ≔
(1 − 𝑡)𝐴𝜅𝑞ℓ + 𝑡

1
𝐿

(1 − 𝑡)𝐴𝜅 + 𝑡
,

It is not hard to show that these terms remain non-negative and sum to one for
all 𝑡 ∈ [0, 1]. Thus, the tame functions retain contractibility.

So, we have demonstrated that the tame functions are subsets of the general
functions and that they retain contractibility. We could be done, but the question
remains: what is the modeling action here? The fact that the tame functions
behave like the general functions is reassuring, but we have not yet introduced a
notion of representation. What might be the nature of a mapping that sends a
pair (𝜏, 𝜅) ∈ T ×K to a tame pair (𝜏[T] , 𝜅[T]) ∈ T [T] ×K[T]?

And now that we have set up this problem in a way that makes the modeling
action clear, we may turn to answering it. The next step is to define a process that
takes a general technology-cost pair and produces a differentiable approximation;
we call this process regularization.

3.2 Regularization

Observe that neither Definition 4 nor Definition 5 imposed any differentiabil-
ity assumptions; we only required continuity. This was intentional: continuity
captures responsiveness without presupposing smooth substitutability or dif-
ferentiable marginal rates. It also gave us the largest possible ambient space in
which to reason about technological and behavioral forms.

37



The drawback is analytic. A merely continuous technology 𝜏 or cost 𝜅 may
have corners, flats, or kinks that block the use of gradients and first-order tools.
As a result, constructions like Problem SPP (𝑚, 𝜏, 𝜅) and Game 23 cannot yet be
treated by calculus. Before we can talk about optimal responses or marginal ad-
justments, we must pass through a stage of regularization: a systematic smoothing
of rough functions into differentiable ones.

Regularization should be thought of as a gentle lens: it blurs the small
irregularities of 𝜏 and 𝜅 while leaving their large-scale shape intact. Formally,
we seek a continuous operator

D ∶ T ×K ⟶ T ×K,

that replaces each pair (𝜏, 𝜅) by a smoothed pair (D𝜏(𝜏), D𝜅(𝜅)) whose mem-
bers are smooth—that is, infinitely differentiable on 𝑋 .11 Several features of this
operator are essential: it must be continuous as a map, preserve the structural
properties of T and K (such as monotonicity, convexity, and concavity), and—
most importantly—fix the “tame” functions that already behave well:

D∣T [T]×K[T] = idT [T]×K[T] .

Smooth regularization is not an exotic device; it expresses a basic fact of
functional analysis: smooth functions are dense in their continuous and convex-concave
parents. On compact domains, every continuous function can be uniformly ap-
proximated by a smooth one, and the same holds under monotonicity, convexity,
or concavity constraints. Hence the existence of a continuous smoothing map is
not surprising; it is a canonical way to make explicit what this density already
implies.12

Intuitively,D acts like a variable-bandwidth mollifier: it smooths aggressively
where a technology or cost is rough, and not at all where the function is already
tame. The following proposition records the analytic fact that such an operator
exists and behaves as required.

28 Proposition
There exists a continuous regularization operator

D ∶ T ×K ⟶ T [∞]
×K[∞]

,

11We write T [∞]
≔ T ∩ 𝐶

∞(𝑋, 𝑀) and K[∞]
≔ K ∩ 𝐶

∞(𝑋,R≥0).
12There are many constructions that achieve it: convolution with a smooth kernel, Moreau

envelopes, and spline regularization are all standard. Among them, the causal convolution approach
is the most natural here: it preserves coordinatewise monotonicity, respects the boundary of the
nonnegative orthant, and can be tuned continuously through a gauge that measures distance to
the tame subclass.
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such that

D∣T [T]×K[T] = idT [T]×K[T] ;

in other words, D fixes the tame functions. [Proof .]

The proof is constructive, providing an explicit formula for D based on causal
convolution with a smooth kernel.

The first step of our modeling process is now complete. We have defined
a regularization operator D that smooths arbitrary technologies and costs into
differentiable ones while leaving tame functions unchanged. That smoothing
process takes the form

𝑡 ⟼ (1 + 𝜏)1−𝑡
⋅ (1 +D𝜏(𝜏))𝑡 − 1,

𝑡 ⟼ log((1 − 𝑡) exp𝜅 + 𝑡 expD𝜅(𝜅)),

for 𝑡 ∈ [0, 1/2], which continuously deforms any technology or cost into its
regularized counterpart. SinceDfixes the tame functions, this homotopy remains
within the tame function spaces when started there.

3.3 Tamification

What does it mean to represent a complex function by a simpler one? What,
precisely, does simplification do—and how does it preserve what matters? Before
claiming that the tame states adequately represent the general states, we must
articulate what the act of representation consists of and what structure it must
respect.

Consider a regularized technology 𝜏 ∈ T [∞]. Does it already come equipped
with a tame representative? If so, there would exist a positive scale 𝐴𝜏 > 0 and a
weight vector 𝛽 ∈ Δ𝐿 such that

𝜏(𝑥) = 𝐴𝜏 ∑
ℓ∈𝐿

𝛽ℓ log(1 + 𝑥ℓ).

This is a highly restrictive condition, so we cannot expect an arbitrary 𝜏 to satisfy
it exactly. Instead, we seek a systematic way to extract from 𝜏 a canonical pair
(𝐴𝜏 , 𝛽)—a “tame image” that captures its first-order structure.

A natural place to begin is the gradient of 𝜏 at the origin, ∇𝜏(0). Because 𝜏
is smooth and strictly increasing, each partial derivative 𝜕ℓ𝜏(0) is positive, and
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the gradient encodes the initial marginal product of each input. Let us normalize
this gradient to obtain a probability vector

𝛽ℓ ≔
𝜕ℓ𝜏(0)

∑𝑗∈𝐿 𝜕𝑗𝜏(0)
,

which measures the relative importance of each input at the start of production.13

The corresponding scale factor

𝐴𝜏 ≔ ∑
ℓ∈𝐿

𝜕ℓ𝜏(0)

records the total initial productivity of the technology. With these parameters,
we define the tame representation of 𝜏 by

T(𝜏)(𝑥) ≔ 𝐴𝜏 ∑
ℓ∈𝐿

𝛽ℓ log(1 + 𝑥ℓ).

Because 𝜏 is increasing, ∇𝜏(0) ∈ R𝐿
⩾0, so 𝛽 ∈ Δ𝐿 and 𝐴𝜏 > 0, ensuring that T(𝜏)

is indeed a well-defined tame technology.
The same reasoning applies to costs. For a regularized cost 𝜅 ∈ K[∞], define

𝑞ℓ ≔
𝜕ℓ𝜅(0)

∑𝑗∈𝐿 𝜕𝑗𝜅(0)
,

𝐴𝜅 ≔ ∑
ℓ∈𝐿

𝜕ℓ𝜅(0),

and let

T(𝜅)(𝑥) ≔ 𝐴𝜅 ∑
ℓ∈𝐿

𝑞ℓ 𝑥ℓ .

Here, the normalized vector 𝑞 ∈ Δ𝐿 expresses the initial marginal cost shares
across inputs, while 𝐴𝜅 measures the overall cost scale. Since 𝜅 is strictly
increasing, these quantities are positive, and T(𝜅) is a well-defined tame cost.

Taken together, these constructions define a tamification operator

T ∶ T [∞]
×K[∞]

⟶ T [T]
×K[T]

,

13The reader might worry that the denominator is zero, but this is precluded by ray surjectivity
of 𝜏; if there exists a direction such that 𝜏 strictly increases along the direction, then there exists at
least one partial derivative that is positive.
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that sends each regularized technology-cost pair to its tame representation. This
operator captures the first-order structure of technologies and costs at the origin,
distilling them into their simplest functional forms. Remarkably, the tamification
of technologies and costs renders non-identical objects equivalent. Put differently,
T is not a one-to-one function from T [∞] to T [T] and from K[∞] to K[T], but
rather a many-to-one function. Consider two distinct technologies 𝜏0 and 𝜏1 in
T [∞]. If it happens to be that ∇𝜏0(0) = ∇𝜏1(0), then T(𝜏0) = T(𝜏1), even
though the two functions are distinct. This is a powerful result, as it allows
us to treat the tame functions as a quotient: each tame function represents an
entire equivalence class of regularized functions that share the same first-order
structure at the origin.14

Crucially, tamification leaves tame functions unchanged, as we record in the
following lemma:

29 Lemma
For all (𝜏, 𝜅) ∈ T [T] ×K[T], we have T(𝜏, 𝜅) = (𝜏, 𝜅). [Proof .]

This is a simple consequence of the definition of tamification, but it is an important
one. It states that the tame functions are fixed points of the tamification process.
This is both a powerful and philosophically appealing result. If we think of T ×K
as a peach, then the tame functions T[T] ×K[T] are the pit at its center. We can
squeeze the peach down to the pit, with the squishing of flesh and the dripping
of juice representing the information lost in the tamification process. But the pit
is unchanged by the squishing; it is invariant under the process. In naming it
representative of its extrinsic abode, we do it no intrinsic injustice.

This is the second step of our modeling process. We have defined a tami-
fication operator T that extracts from each regularized technology-cost pair a
canonical tame representative. That representative captures the first-order struc-
ture of the original pair at the origin and leaves the tame functions unchanged.
The tamification process takes the form

𝑡 ⟼ (1 +D𝜏(𝜏))1−𝑡
⋅ (1 + (T𝜏 ◦D𝜏)(𝜏))𝑡 − 1,

𝑡 ⟼ log ((1 − 𝑡) exp(D𝜅(𝜅)) + 𝑡 exp((T𝜅 ◦D𝜅)(𝜅))) ,
for 𝑡 ∈ [1/2, 1], which continuously deforms the regularized functions into their
tame representatives. Since T fixes the tame functions, this homotopy remains
within the tame function spaces when started there—across all 𝑡 ∈ [0, 1], the
tame functions are fixed points of the entire deformation.

14One could imagine quotienting out by higher-order derivatives, as well—functions with the
same Hessian matrices, same third-order information, and so on. This brings us to the study of
jets, which seem a promising avenue for enriching the present construction with more data.
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3.4 Adequacy of the Tame Representation

We have now introduced a full theory of representation through regularization
and tamification. Regularization smooths arbitrary technologies and costs into
differentiable ones, while tamification extracts from those smooth functions a
canonical tame representative. To show that this representation is adequate—
that the tame functions faithfully reflect the topological structure of the general
ones—we combine the two steps into a single continuous deformation

𝐻 ∶ [0, 1] × T ×K ⟶ T ×K,

defined for the technologies by

{((1 + 𝜏)1−2𝑡 ⋅ (1 +D𝜏(𝜏))2𝑡 − 1) , 𝑡 ∈ [0, 1/2],
((1 +D𝜏(𝜏))2−2𝑡 ⋅ (1 + (T𝜏 ◦D𝜏)(𝜏))2𝑡−1 − 1) , 𝑡 ∈ [1/2, 1],

and for the costs by

{log((1 − 2𝑡) exp𝜅 + 2𝑡 expD𝜅(𝜅)), 𝑡 ∈ [0, 1/2],
log((2 − 2𝑡) expD𝜅(𝜅) + (2𝑡 − 1) exp(T𝜅 ◦D𝜅)(𝜅)), 𝑡 ∈ [1/2, 1].

The two branches meet at 𝑡 = 1/2, where 𝐻(1/2, 𝜏, 𝜅) = (D𝜏(𝜏),D𝜅(𝜅)), en-
suring continuity. At 𝑡 = 0, 𝐻 is the identity; at 𝑡 = 1, it yields the tamified
regularization (T𝜏 ◦ D𝜏 , T𝜅 ◦ D𝜅). Because D and T both act as the identity
on the tame functions, these remain fixed throughout. Hence 𝐻 defines a strong
deformation retraction of T ×K onto T [T] ×K[T].

30 Proposition
T [T] ×K[T] is a strong deformation retract of T ×K. [Proof .]

The existence of this retraction completes the circle: every general technology-cost
pair can be continuously deformed into its canonical tame representative without
leaving the ambient space, and every tame pair remains invariant along the way.
The adequacy of the tame representation is therefore not merely heuristic but
topological.

In which “adequacy” is finally explained. I have been remiss in not defining
what I mean by “adequacy” until now; it seemed easier to provide the definition
after the construction. Adequacy, in this context, means that the tame repre-
sentation preserves the essential topological structure of the ambient space. A
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strong deformation retraction provides an exact and conceptually disciplined
sense in which this is true. It ensures that the tame space T [T] ×K[T] is not only
contained within the ambient space T × K but is, up to homotopy, equivalent
to it. Every general technology-cost pair can be continuously deformed into
its tame counterpart through a path that remains entirely within the original
functional space, and every tame pair remains fixed throughout the deformation.
This means that no information about the global topological structure of T ×K
is lost in passing to the tame subspace: all homotopy invariants—connectedness,
contractibility, and higher homotopy groups—are preserved. In geometric terms,
one might think of the ambient space as a possibly irregular cloud enclosing a
smooth inner region. The deformation retraction defines a continuous flow from
the cloud to its core, collapsing extraneous irregularities while leaving the essen-
tial shape untouched. Adequacy, in this sense, is neither mere approximation
nor abstraction: it is the existence of a continuous correspondence that preserves
topological identity while improving analytic tractability. The tame functions do
not merely approximate the general ones; they constitute a canonical, homotopi-
cally faithful image of them, sufficient for any analysis that depends on global
qualitative structure rather than local idiosyncrasy.

Having now established the adequacy of the tame representation in the
parameter space, we may turn to the states themselves.

3.5 The Geometry of Tame States

We just saw that the tame technologies and costs adequately represent their
ambient spaces. What about the states they generate? Recall from Section 1 that
each technology-cost pair (𝜏, 𝜅) ∈ T × K induces a state 𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 by
solving the production problem SPP (𝑚, 𝜏, 𝜅) for each output level𝑚 ∈ 𝑀. The
collection of all such states forms the state space PT ×K. We may now consider
the subset of states generated by tame technologies and costs:

31 Definition
We define the set of tame states as

PT [T]×K[T] ≔ {𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋
»»»»»» (𝜏, 𝜅) ∈ T [T]

×K[T]} .

Because the solutions to the production problem SPP (𝑚, 𝜏, 𝜅) vary continu-
ously with the technologies and costs, the tame states are themselves a strong
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deformation retract of PT ×K; they are just as adequate at representing their
ambient space as are the tame technologies and costs.15

As promised, we proceed in traditional style. Now that we have smooth func-
tions, we may characterize the solutions to the production problem SPP (𝑚, 𝜏, 𝜅)
by relating marginal products to marginal costs.

32 Lemma
For all (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T [∞] ×K[∞], 𝜋𝜏,𝜅(𝑚) solves SPP (𝑚, 𝜏, 𝜅) if and only if
there exists a Lagrangian multiplier 𝜆𝑚,𝜏,𝜅 ∈ R>0 and a vector of Karush-Kuhn-Tucker
multipliers 𝜂𝑚,𝜏,𝜅 ∈ R𝐿

⩾0 such that:

𝜕𝜅

𝜕𝑥ℓ
(𝜋𝜏,𝜅(𝑚)) − 𝜆𝑚,𝜏,𝜅

𝜕𝜏

𝜕𝑥ℓ
(𝜋𝜏,𝜅(𝑚)) − 𝜂𝑚,𝜏,𝜅,ℓ = 0 for all ℓ ∈ 𝐿,

𝑚 − 𝜏 (𝜋𝜏,𝜅(𝑚)) = 0,
𝜂𝑚,𝜏,𝜅,ℓ × 𝜋𝜏,𝜅,ℓ(𝑚) = 0 for all ℓ ∈ 𝐿,

FOC (𝑚, 𝜏, 𝜅)

In case (𝜏, 𝜅) ∈ T [T] ×K[T], FOC (𝑚, 𝜏, 𝜅) takes the simpler form

𝐴𝜅𝑞ℓ − 𝜆𝑚,𝜏,𝜅
𝐴𝜏𝛽ℓ

1 + 𝜋𝜏,𝜅,ℓ(𝑚) − 𝜂𝑚,𝜏,𝜅,ℓ = 0 for all ℓ ∈ 𝐿,

𝑚 − 𝐴𝜏 ∑
ℓ∈𝐿

𝛽ℓ log (1 + 𝜋𝜏,𝜅,ℓ(𝑚)) = 0,

𝜂𝑚,𝜏,𝜅,ℓ × 𝜋𝜏,𝜅,ℓ(𝑚) = 0 for all ℓ ∈ 𝐿,

where 𝐴𝜏, 𝛽, 𝐴𝜅, and 𝑞 are the scale and weight parameters witnessing tameness of 𝜏
and 𝜅 respectively.

We state the lemma without proof; the reader is referred to any introductory
optimization textbook (e.g., Sundaram, 1996) for further details.

The first-order conditions FOC (𝑚, 𝜏, 𝜅) are a function, the zeroes of which
are precisely the solutions to the production problem SPP (𝑚, 𝜏, 𝜅). We have
access to them because we have introduced a differentiable structure on the
set of states, and they are equivalent to a solution because we have imposed a
shape condition on the cost functions. Essentially, the quantitative functions

15In the proof of Proposition 13, we defined a canonical lift that sent arbitrary𝜋𝜏,𝜅 to a particular
(𝜏, 𝜅) combination, and this lift is continuous in 𝜋. The lift is also of use here; to retract arbitrary
𝜋 onto tame 𝜋, we first lift to a canonical technology-cost pair, then work through the homotopy
as constructed in the previous subsection.
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have been defined to unlock the door for this sort of analysis; they are the
functions for which first-order analysis is straightforward and appropriate. They
are a particularly appealing choice for modeling the state in this style, as their
instantiations of FOC (𝑚, 𝜏, 𝜅) are particularly simple. Owing to this simplicity,
it is straightforward matter to arrive at the climax of Section 3.

33 Proposition
PT[T]×K[T] is a convex set. [Proof .]

We have therefore shown that the set of tame states is a convex set, which is a
much stronger result than the contractibility of the general states. Not only does
the peach pit adequately represent the peach without distortion, but it also has a
richer structure than the peach itself!

What is convexity that contractibility is not?

1. For starters, any convex set is automatically contractible, but not vice versa.
Thus, there is more information in the convexity of the tame states than in
the contractibility of the general states. If nothing else, this means that the
tame states are a more informative model of the general states.

2. But more than this, convexity is an extraordinarily useful property for a
set to have. It means that the set is “nice” in a way that contractibility does
not. For example, since the set of tame states is convex, we may define a
convex combination of two states 𝜋0 and 𝜋1 as

𝜋𝜆 ≔ 𝜆𝜋0 + (1 − 𝜆)𝜋1 ,

where 𝜆 ∈ [0, 1] sets the terms of the combination. This is a well-defined
operation, and it is easy to see that the result is a state. Whereas we
could only link two states in the general set through a continuous path, we
can now link them through a straight line. Interpolations like this mean
that we may define functions on PT [T]×K[T] that possess properties like
concavity/convexity or quasiconcavity/quasiconvexity, which are not well-
defined on non-convex sets. As these properties are the bread and butter
of economic analysis, this is a powerful result: one can imagine choosing
an optimal state from a set of states, and then using the properties of the
set to analyze the implications of that choice.

3. Convexity is indeed a geometric property, rather than a topological one;
it refers to shape, not merely connectivity. For example, consider a disk
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Figure 6: Illustration of convexity representation.

embedded in R2. The disk is contractible, as it can be continuously shrunk
to a point. But it is also convex, as any two points in the disk can be
connected by a straight line that lies entirely within the disk. Now consider
the fact that the boundary of the circle maintains curvature with constant
sign: it always bends in the same direction. This is a property of the shape
of the disk, not the disk’s connectivity. Thus, we are able to learn more
about the nitty-gritty details of the set from the convexity of the tame states
than we could from the contractibility of the general states.

4. Finally, convexity in this setting is not assumed; it is discovered. We did
not impose convexity on the production functions or the cost structure.
Instead, we began with tame functions motivated by representational
adequacy and computational accessibility, and convexity emerged from the
internal geometry of their solutions. The tame states are not just analytically
convenient, nor just adequate for representation, nor just geometrically
simple: they are, somehow, all of these things at once. Far from a convenient
mathematical trick, they provide deep insight into both the structure of
states and the act of representation itself.

We are left with a model that is smaller than the original, but richer in structure.
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This is the paradox of tamification: by simplifying, we reveal. The tame states
are not the full story, but they are the story told clearly, with lines drawn straight
and connections left intact.

3.6 Closing the Book

We opened this section by transferring the basic logic of Game 1 to its “enriched”
counterpart, Game 23. Having found ourselves at an impasse, we begged for
tractability by introducing tame functions. After thinking hard about the ade-
quacy of that representation, we arrived at a convex set of tame states. We may
now return to Game 23 and test whether these tame states yield a more explicit
characterization of equilibrium.

The reward for all this work is not a new assumption, but a new kind of vision.
Once both technologies and costs are tame, the game itself becomes geometrically
simple. Where before the equilibrium was a tangle of implicit reactions, we now
find a surface that can be described explicitly—and even elegantly. Proposition 34
shows that each player’s best response takes on a clear analytical structure: the
equilibrium allocation is determined by a single scalar parameter that balances
marginal productivity and marginal cost across all inputs. The entire strategic
problem collapses to a one–dimensional fixed point, and the equilibrium emerges
in a “water–filling” shape: continuous, ordered, and interpretable.

34 Proposition
Suppose the game in Game 23 is tame, that is, for each player 𝑖 ∈ {1, 2} we have

𝜏𝑖(𝑥𝑖) = 𝐴𝜏,𝑖 ∑
ℓ∈𝐿

𝛽𝑖 ,ℓ log(1 + 𝑥𝑖 ,ℓ), 𝜅𝑖(𝑥𝑖) = 𝐴𝜅,𝑖 ∑
ℓ∈𝐿

𝑞𝑖 ,ℓ 𝑥𝑖 ,ℓ ,

with 𝐴𝜏,𝑖 , 𝐴𝜅,𝑖 > 0, 𝛽𝑖 , 𝑞𝑖 ∈ Δ𝐿 and all entries strictly positive. Let 𝑝𝑖 denote the
contest success probability and set

𝑊(𝑥1 , 𝑥2) = 𝑉 − 𝑘(𝑒𝜅1(𝑥1) + 𝑒
𝜅2(𝑥2) − 2),

𝑝1(𝑥1 , 𝑥2) =
𝜆 𝜏1(𝑥1)𝛼

𝜆 𝜏1(𝑥1)𝛼 + 𝜏2(𝑥2)𝛼
, 𝑝2(𝑥1 , 𝑥2) = 1 − 𝑝1(𝑥1 , 𝑥2).

Then any Nash equilibrium (𝑥∗1 , 𝑥∗2 ) with strictly positive allocations on a (possibly
player-specific) active set has the water–filling form: for each player 𝑖 there exists a
scalar 𝑐𝑖 > 0 such that

𝑥
∗
𝑖 ,ℓ = max {0, 𝑐𝑖

𝛽𝑖 ,ℓ
𝑞𝑖 ,ℓ

− 1} for all ℓ ∈ 𝐿, (1)
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and the scalar 𝑐𝑖 solves the one-dimensional fixed point

𝑐𝑖 =
(1 − 𝑝𝑖) 𝛼 𝐴𝜏,𝑖

𝑘 𝐴𝜅,𝑖

𝑊(𝑥∗1 , 𝑥∗2 )
𝑒𝜅𝑖(𝑥

∗
𝑖 ) 𝜏𝑖(𝑥∗𝑖 )

. (2)

In particular, if player 𝑖’s equilibrium has all inputs active, then

𝜏𝑖(𝑥∗𝑖 ) = 𝐴𝜏,𝑖( log 𝑐𝑖 +∑
ℓ∈𝐿

𝛽𝑖 ,ℓ log
𝛽𝑖 ,ℓ
𝑞𝑖 ,ℓ

), 𝜅𝑖(𝑥∗𝑖 ) = 𝐴𝜅,𝑖 (𝑐𝑖 − 1), (3)

so that (2) becomes a scalar equation in 𝑐𝑖 .

The proof follows directly from the first-order conditions in Lemma 32 together
with the structure of the contest success functions. The resulting equilibrium
allocations echo the “water–filling” solutions of information theory (Cover and
Thomas, 1990): each player’s resource distribution is governed by a single balanc-
ing constant 𝑐𝑖 . Inputs receive positive allocations only when their productivity-
to-cost ratio exceeds the threshold implied by 𝑐𝑖 , so that each player’s resources
quite literally fill up the most efficient channels first. The multidimensional
strategic landscape thus reduces to a scalar equilibrium condition, a geometric
equilibrium of pressures.

Finally, in the symmetric case, the simplification is complete.

35 Corollary
In the symmetric tame case 𝐴𝜏,1 = 𝐴𝜏,2 = 𝐴𝜏, 𝐴𝜅,1 = 𝐴𝜅,2 = 𝐴𝜅, 𝛽1 = 𝛽2 = 𝛽,
𝑞1 = 𝑞2 = 𝑞, there exists a symmetric equilibrium with 𝑥∗1 = 𝑥

∗
2 ≕ 𝑥

∗ of the form

𝑥
∗
ℓ = max {0, 𝑐

𝛽ℓ
𝑞ℓ

− 1} for all ℓ ∈ 𝐿, (4)

where 𝑐 > 0 solves

𝑐 =
𝛼 𝐴𝜏

2 𝑘 𝐴𝜅

𝑉 − 2𝑘(𝑒𝐴𝜅(𝑐−1) − 1)
𝑒𝐴𝜅(𝑐−1) 𝐴𝜏( log 𝑐 +∑ℓ∈𝐿 𝛽ℓ log 𝛽ℓ

𝑞ℓ
)
. (5)

If 𝑐 ≥ maxℓ∈𝐿
𝑞ℓ
𝛽ℓ

then all inputs are active and (4) holds without truncation.

In symmetry, everything condenses to a single number. Both players face the
same geometry of tradeoffs, and equilibrium is achieved when this common
scalar 𝑐 balances their shared marginal returns. It is the strategic shadow price

48



of efficiency, the market-clearing fulcrum against which every actor measures
marginal gain, the residue of competition distilled to its purest form. The
equilibrium surface is perfectly smooth, its contours given by the ratios 𝛽ℓ/𝑞ℓ : a
literal map of efficiency. The tame world does not merely approximate strategic
interaction—it makes it visible.

If the aim of Section 3 was to find a tractable representation of complex
strategic behavior, then we have succeeded. The tame states not only adequately
represent the general states, but endow the game with a geometry rich enough
to admit explicit, interpretable equilibria. These equilibria are not accidents of
simplification; they are the natural shapes that emerge when the model is seen
clearly. Tameness, in the end, has not narrowed our view: it has brought the
whole system into focus.

4 Conclusion

Let us recall our formal goals.

3 Program
Construct and investigate a map asserting which resources the state will mobilize given:

1. some specified force level;

2. the state’s technology for converting resources into force; and

3. the state’s cost of mobilizing resources.

Call such a map the opportunity cost of militarization.

As promised, we have constructed a map, 𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 , that specifies which
resources 𝑥 ∈ 𝑋 the state mobilizes given a desired level of force 𝑚 ∈ 𝑀, a
militarization technology 𝜏 ∈ T , and a cost function 𝜅 ∈ K. This map is not
arbitrary: it is the solution to the optimization problem SPP (𝑚, 𝜏, 𝜅). We have,
in effect, taken seriously a familiar metaphor—the state as a kind of firm—and
given it mathematical substance. The analogy is not merely rhetorical. It reflects a
lineage of thought in which the state’s most fundamental activity is the organized
production of coercive capacity. As Tilly put it, states make war and war makes
states. If the state does many things, this is among the first.

And yet, what we have done here is austere. We have not modeled diplomacy,
legitimacy, or social order. We have studied a single function. We have treated the
state as a mapping from desired power to resource allocation, stripped of history,
culture, and contingency. This is what a state can be in isolation: an operator
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defined by the logic of its production. It is the thin silhouette of the state when all
that remains are its necessary conditions for force. That silhouette is enough to
tell us something fundamental. It shows us that even when reduced to its most
skeletal form, the state’s structure obeys a logic both simple and revealing.

Because the state’s production problem is continuous, its set of solutions
inherits the structure of the functions that define it. We showed that PT ×K—the
set of all such “states”—is contractible under very general assumptions. This
means that, at a deep structural level, all states belong to a single connected
manifold. There are no categorical fractures among them. Diversity, in this sense,
is variation within a unified topology. To the degree that there are “types” of
states, they occupy continuous regions within the same space rather than distinct
kinds. This formalizes what structural realists have long argued: that the variety
of states reflects the play of structure, not the eruption of essence. As in Waltz,
the system constrains before it differentiates.

The argument could have ended there—with a statement about the state’s
topological unity. But topology tells us only that something holds together, not
what shape it takes. We therefore passed from the topological to the geometric,
introducing tame functions to represent technologies and costs. This was not
a turn to realism, but to adequacy. The tame classes preserve the structure of
the general classes up to deformation: they are simpler, but not simpler than
the truth. They let us see the shape of the state’s possibility space without
inventing properties that were not already implicit in the general formulation. In
Quine’s sense, this was a maneuver of economy rather than ontology. We have
not multiplied entities, only clarified our language.

The reward was geometric. Where the general set of states was contractible,
the tame set was convex. Convexity is not merely a mathematical convenience—it
is a statement about structure. It means that mixtures of states are still states, that
intermediate configurations are coherent. It grants a linear geometry to the space
of statehood. In that geometry, we can speak of interpolation and equilibrium;
we can connect two points by a straight path rather than by a contorted one. The
tame representation transforms the state system from a loose topological fabric
into a smooth, navigable surface.

Once both technology and cost were tame, the strategic problem of contesta-
tion—the game of mobilization—became solvable in closed form. The equilib-
rium took on a shape: a “water-filling” pattern, smooth and ordered, governed
by a single scalar parameter balancing productivity and cost. The state’s strategic
behavior, once tangled in many dimensions, reduced to an intelligible surface.
This was not a trick of algebra, but the visible reward of tamification: a clarity
earned by structure rather than assumed by fiat. It shows that when we discipline
our representations, the phenomena we study sometimes discipline themselves.
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At this point, we can see that the project has always been double. Formally,
it has been about the state’s production of force; philosophically, it has been
about what it means to model. We have constructed not a picture of the state,
but a lens for seeing what makes pictures possible. The “class of all states” is
not a metaphysical claim about what exists, but a linguistic construction that lets
us talk about what can be represented. Our results—contractibility, convexity,
equilibrium—are properties of that representation, not of the world itself. They
are, in Quinean spirit, the residuum of what must be true if our talk of states is
to cohere. They tell us what holds once we have disciplined our speech about
the state.

And yet, even in this spare, functional portrait, we glimpse something of the
real state. Force production is not the whole of statehood, but it is never far from
its core. It is the part of the state that can be most cleanly formalized because it
is the part that must, in the end, work. To model the state through this function
is to study the minimal conditions under which coercive capacity can exist at all.
In that sense, we have isolated one strand of a much larger braid. The state does
not merely produce force; it also allocates attention, defines boundaries, and
sustains recognition. Those processes depend on relations—with other states,
with societies, with environments. We have bracketed those relations here not
because they are unimportant, but because understanding them requires first
knowing what the isolated state looks like. A relation presupposes relata; we
have studied one of them.

But the next step, inevitably, is to reintroduce relation. If the state can be
defined by the way it converts resources into force, it can also be known by the
ways it maps into, and is mapped by, others. Its identity lies not only in what
it does alone, but in how it acts upon and is acted upon—how it transforms,
and is transformed by, the networks of which it is a part. There is a sense in
which to know a state is to know the family of mappings that express its relations.
The future task, then, is to reconstruct the state not as a solitary object but as a
structure of correspondences: a system that is determined, not by its contents,
but by its position in a web of transformations. If the present paper has shown
what a state can be in isolation, the next must show what a state becomes in
relation.

For now, it is enough to recognize what has been achieved. We have taken
the simplest and most severe abstraction of the state—the act of force produc-
tion—and treated it as a mathematical object. We have found in that austerity a
topology of unity, a geometry of convexity, and a structure of equilibrium. We
have shown that even when pared down to a single function, the logic of the state
yields an intelligible form. That is a modest claim, but it carries an unexpected
grace. To study the state in this way is not to reify it, but to remind ourselves
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that beneath the flux of politics lies a disciplined structure of reasoning—a space
where things can, at last, be seen clearly.
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A Proofs

This section contains the proofs of all the results in the main text. However, since
many of the technical details are not relevant to the argument presented in the
main text, the section will have to be broken up into several parts. In particular,
we need to study the structure of the spaces of militarization technologies and
cost functions; happily, these are similar enterprises, and many of the results we
prove for one space will carry over to the other.

A.1 The Motiving Game

Here we derive the unique Nash equilibrium of Game 1.

1 Game
Two states, 𝑖 ∈ {1, 2}, simultaneously choose a force level 𝑚𝑖 ∈ R+. Their payoffs are
given by von Neumann-Morgenstern expected utility functions:

𝑈1(𝑚1 , 𝑚2) =
𝜆𝑚𝛼

1

𝜆𝑚𝛼
1 + 𝑚𝛼

2
× (𝑉 − 𝑘(𝑚1 + 𝑚2)) ,

𝑈2(𝑚1 , 𝑚2) =
𝑚

𝛼
2

𝜆𝑚𝛼
1 + 𝑚𝛼

2
× (𝑉 − 𝑘(𝑚1 + 𝑚2)) ,

where:

1. 𝜆 ∈ R>0 captures the relative effectiveness of the forces;

2. 𝛼 ∈ (0, 1] captures the decisiveness of superior force;

3. 𝑉 ∈ R>0 captures the value of the prize; and

4. 𝑘 ∈ (0, 1] captures the inverse-recuperability of militarization costs.

The game has a unique Nash equilibrium, given by:

(𝑚∗
1 , 𝑚

∗
2 ) = ( 𝛼

1 + 𝛼
⋅
𝑉

𝑘
⋅

𝜆− 1
1+𝛼

1 + 𝜆− 1
1+𝛼

,
𝛼

1 + 𝛼
⋅
𝑉

𝑘
⋅

1

1 + 𝜆− 1
1+𝛼

) ,

and (evidently) this solution is continuous in all parameters. [Proof .]
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Proof. We first show that there cannot exist a Nash equilibrium where 𝑚1 = 0 =

𝑚2, which involves specifying contest probabilities for this case. We simply set

𝑝1(0, 0) =
𝜆

𝜆 + 1 and 𝑝2(0, 0) =
1

𝜆 + 1 , (6)

which reflect the same relative effectiveness ratio as in the positive-effort case.
The expected utilities for both players are given by:

𝑈1(0, 0) =
𝜆

𝜆 + 1 ×𝑉,

𝑈2(0, 0) =
1

𝜆 + 1 ×𝑉.
(7)

Without loss of generality, suppose Player 1 deviated to 𝑚1 = 𝜀 for some 𝜀 > 0.
Then Player 1’s expected utility is given by:

𝑈1(𝜀, 0) =
𝜆𝜀𝛼

𝜆𝜀𝛼 + 0𝛼 × (𝑉 − 𝑘(𝜀 + 0)) ,

=
𝜆𝜀𝛼

𝜆𝜀𝛼
× (𝑉 − 𝑘𝜀) ,

= 𝑉 − 𝑘𝜀.

(8)

Note that

𝑈1(𝜀, 0) −𝑈1(0, 0) = 𝑉 − 𝑘𝜀 −
𝜆

𝜆 + 1𝑉,

= (1 −
𝜆

𝜆 + 1)𝑉 − 𝑘𝜀,

=
𝑉

𝜆 + 1 − 𝑘𝜀.

(9)

Therefore, we may choose 𝜀 <
𝑉

𝑘(𝜆+1) , and this ensures that𝑈1(𝜀, 0) > 𝑈1(0, 0).
A similar argument shows that Player 2 will not choose an effort level of 0 against
0. We conclude that there cannot exist a Nash equilibrium where 𝑚1 = 0 = 𝑚2.

Now we show that there cannot exist a Nash equilibrium where 𝑚1 = 0 and
𝑚2 > 0. The expected utilities for both players are given by:

𝑈1(0, 𝑚2) =
𝜆0𝛼

𝜆0𝛼 + 𝑚𝛼
2
× (𝑉 − 𝑘(0 + 𝑚2)) ,

= 0,

𝑈2(0, 𝑚2) =
𝑚

𝛼
2

𝜆0𝛼 + 𝑚𝛼
2
× (𝑉 − 𝑘(0 + 𝑚2)) ,

= 𝑉 − 𝑘𝑚2.

(10)
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Holding 𝑚1 = 0 fixed, consider a deviation by Player 2 to 𝜁𝑚2 for 𝜁 ∈ (0, 1).
Then Player 2’s expected utility is given by:

𝑈2(0, 𝜁𝑚2) =
(𝜁𝑚2)𝛼

𝜆0𝛼 + (𝜁𝑚2)𝛼
× (𝑉 − 𝑘(0 + 𝜁𝑚2)) ,

=
(𝜁𝑚2)𝛼

(𝜁𝑚2)𝛼
× (𝑉 − 𝑘𝜁𝑚2) ,

= 𝑉 − 𝑘𝜁𝑚2.

(11)

This is a strict improvement over 𝑈2(0, 𝑚2), so we conclude that there cannot
exist a Nash equilibrium where 𝑚1 = 0 and 𝑚2 > 0. A similar argument shows
that there cannot exist a Nash equilibrium where 𝑚1 > 0 and 𝑚2 = 0. We
therefore study only the interior case where 𝑚1 , 𝑚2 > 0.

Since any pure-strategy Nash equilibrium, if it exists, must be interior, we
proceed by studying the first-order conditions of the expected utility functions.
These conditions are

𝛼𝑚𝛼
2𝑉

𝜆𝑚1+𝛼
1 + 𝑚𝛼

2 ((1 + 𝛼)𝑚1 + 𝛼𝑚2)
= 𝑘, (12)

𝜆𝛼𝑚𝛼
1𝑉

𝑚1+𝛼
2 + 𝜆𝑚𝛼

1 (𝛼𝑚1 + (1 + 𝛼)𝑚2)
= 𝑘. (13)

Define 𝜌 =
𝑚1
𝑚2

, so that 𝑚1 = 𝜌𝑚2. Substituting this into (12) and (13) gives:

𝛼𝑉

𝑚2 (𝛼 + (1 + 𝛼)𝜌 + 𝜆𝜌1+𝛼)
= 𝑘, (14)

𝛼𝜆 (𝜌𝑚2)𝛼𝑉
𝑚2 (𝑚𝛼

2 + 𝜆 (𝜌𝑚2)𝛼 (1 + 𝛼(1 + 𝜌)))
= 𝑘. (15)

Equating the left-hand sides of (14) and (15) gives:

𝛼𝑉

𝑚2 (𝛼 + (1 + 𝛼)𝜌 + 𝜆𝜌1+𝛼)
=

𝛼𝜆 (𝜌𝑚2)𝛼𝑉
𝑚2 (𝑚𝛼

2 + 𝜆 (𝜌𝑚2)𝛼 (1 + 𝛼(1 + 𝜌)))
.

(16)

Cross-multiplying and simplifying gives

1 +
1

𝜆𝜌𝛼 = 𝜌 + 𝜆𝜌
1+𝛼

. (17)

S.I. – 3



Let 𝑥 ≔ 𝜆𝜌1+𝛼
> 0. Since 𝜆𝜌𝛼

= 𝑥/𝜌, (17) becomes

1 +
𝜌
𝑥 = 𝜌 + 𝑥. (18)

Multiplying by 𝑥 and rearranging yields

𝑥
2
+ (𝜌 − 1)𝑥 − 𝜌 = 0, (19)

whose roots are 𝑥 ∈ {−𝜌, 1}. Because 𝑥 > 0, we must have 𝑥 = 1, so

𝜆𝜌
1+𝛼

= 1 ⟹ 𝜌̃ = 𝜆
− 1

1+𝛼 . (20)

Substituting 𝜌̃ into (14) and using 𝜆𝜌̃ 1+𝛼
= 1 gives

𝛼 + (1 + 𝛼)𝜌̃ + 𝜆𝜌̃
1+𝛼

= 𝛼 + (1 + 𝛼)𝜌̃ + 1 = (1 + 𝛼)(1 + 𝜌̃). (21)

Hence the equilibrium efforts are

𝑚
∗
2 =

𝛼𝑉

𝑘(1 + 𝛼)(1 + 𝜌̃)
=

𝛼
1 + 𝛼

⋅
𝑉

𝑘
⋅

1

1 + 𝜆− 1
1+𝛼

, (22)

𝑚
∗
1 = 𝜌̃𝑚

∗
2 =

𝛼
1 + 𝛼

⋅
𝑉

𝑘
⋅

𝜆− 1
1+𝛼

1 + 𝜆− 1
1+𝛼

. (23)

In particular, the equilibrium ratio is uniquely pinned down by

𝑚
∗
1

𝑚∗
2
= 𝜌̃ = 𝜆

− 1
1+𝛼 , (24)

and the scale is uniquely determined by the level first-order condition above, so
there is a unique pair (𝑚∗

1 , 𝑚
∗
2 ) satisfying the first-order conditions.

We must verify that the solution to the first-order conditions corresponds to
a maximum. First, it helps to show the following. Using the first-order condition

𝑘 =
𝛼𝑉

𝑚2 (𝛼 + (1 + 𝛼)𝜌 + 𝜆𝜌1+𝛼)
, (25)

we obtain

𝑚2 =
𝛼𝑉

𝑘 (𝛼 + (1 + 𝛼)𝜌 + 𝜆𝜌1+𝛼)
, 𝑚1 = 𝜌𝑚2. (26)
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Hence

𝑘(𝑚1 + 𝑚2)
𝑉

=
𝛼(1 + 𝜌)

𝛼 + (1 + 𝛼)𝜌 + 𝜆𝜌1+𝛼
. (27)

From the ratio identity implied by the first-order conditions,

1 +
1

𝜆𝜌𝛼 = 𝜌 + 𝜆𝜌
1+𝛼

, (28)

we rewrite the denominator as

𝛼 + (1 + 𝛼)𝜌 + 𝜆𝜌
1+𝛼

= 𝛼(1 + 𝜌) + (𝜌 + 𝜆𝜌
1+𝛼)

= 𝛼(1 + 𝜌) + 1 +
1

𝜆𝜌𝛼 .
(29)

Therefore

𝑘(𝑚1 + 𝑚2)
𝑉

=
𝛼(1 + 𝜌)

𝛼(1 + 𝜌) + 1 + 1
𝜆𝜌𝛼

< 1, (30)

which implies

𝑉 − 𝑘(𝑚1 + 𝑚2) > 0. (31)

Now, let us consider the second-order behavior at the proposed solution. Let
ℎ𝑖(𝑚1 , 𝑚2) = (log◦𝑈𝑖) (𝑚1 , 𝑚2). For Player 1,

ℎ1(𝑚1 , 𝑚2) = log (𝜆𝑚𝛼
1 ) − log (𝜆𝑚𝛼

1 + 𝑚
𝛼
2 ) + log (𝑉 − 𝑘(𝑚1 + 𝑚2)) .

(32)

Differentiating with respect to 𝑚1,

𝜕ℎ1

𝜕𝑚1
=

𝛼
𝑚1

−
𝜆𝛼𝑚𝛼−1

1

𝜆𝑚𝛼
1 + 𝑚𝛼

2
−

𝑘

𝑉 − 𝑘(𝑚1 + 𝑚2)
,

=
𝛼

𝑚1(1 + 𝜆𝜌𝛼) −
𝑘

𝑉 − 𝑘(𝑚1 + 𝑚2)
,

(33)

where again 𝜌 =
𝑚1
𝑚2

. The second derivative is

𝜕2
ℎ1

𝜕𝑚2
1
= −

𝛼𝑚𝛼
2 ((1 + 𝛼)𝜆𝑚𝛼

1 + 𝑚
𝛼
2 )

𝑚2
1 (𝜆𝑚𝛼

1 + 𝑚𝛼
2 )2 −

𝑘
2

(𝑉 − 𝑘(𝑚1 + 𝑚2))2 < 0, (34)

S.I. – 5



where the inequality uses 𝑉 − 𝑘(𝑚1 + 𝑚2) > 0 derived above. Thus ℎ1 is
strictly concave in 𝑚1 for any fixed 𝑚2, so 𝑈1 = exp(ℎ1) is log-concave, hence
quasiconcave, in its own action. The same calculation applies to Player2, implying
each best response is uniquely pinned down by its first-order condition, and the
Nash equilibrium constructed from the FOCs is unique.

Finally, that the equilibrium levels vary smoothly in the parameters is obvious
from their functional forms as given above. [Back to the text.]

A.2 Preliminaries on Technologies

Let us re-state the assumptions we make about the technologies in our model.

4 Definition
The state’s militarization technology is a function

𝜏 ∶ 𝑋 ⟶ 𝑀.

We assume 𝜏 possesses the following properties:

1. Continuity (C𝜏): 𝜏 is continuous;

2. Ray Surjectivity (R𝜏): there exists a point 𝑣 ∈ 𝑋 such that the map

𝑡 ⟼ 𝜏(𝑡𝑣) ∶ R⩾0 ⟶ 𝑀

is continuous, strictly increasing, and unbounded;

3. Weak Monotonicity (M̃𝜏): 𝜏 is weakly increasing in all commodities; and

4. Log-Concavity (L̃𝜏): the map

𝑥 ⟼ log (1 + 𝜏(𝑥))

is concave.16

We denote the set of all such functions by T .
16We use the term “log-concavity” here in a nonstandard way. Ordinarily log-concavity refers

to functions 𝑓 such that log( 𝑓 (𝑥)) is concave. Here, we use log(1 + 𝜏(𝑥)) to ensure that the
function is well-defined at 𝜏(𝑥) = 0. Many a regression-runner has been burned by the logarithm’s
misbehavior at zero, and nearly all of them remedy this by adding one inside the logarithm—
despite all the good statistical reasons not to. It is with a profound sense of solidarity that we
follow suit.
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Let us demonstrate that log-concavity implies quasiconcavity.

36 Lemma
If 𝜏 possesses L̃𝜏, then 𝜏 possesses Weak Quasiconcavity (Q̃𝜏): for all 𝑥0 , 𝑥1 ∈ 𝑋 and
all 𝜆 ∈ (0, 1),

𝑥0 ≠ 𝑥1 ⟹ 𝜏 (𝜆𝑥0 + (1 − 𝜆)𝑥1) ⩾ min {𝜏(𝑥0), 𝜏(𝑥1)} .

Proof. Choose any 𝜏 possessing L̃𝜏 and any 𝑥0 , 𝑥1 ∈ 𝑋 such that 𝑥0 ≠ 𝑥1.
Choose any 𝜆 ∈ (0, 1), and define 𝑥𝜆 ≔ 𝜆𝑥0 + (1 − 𝜆)𝑥1. We need to show that
𝜏(𝑥𝜆) > min {𝜏(𝑥0), 𝜏(𝑥1)}. Without loss of generality, we may assume that
𝜏(𝑥0) ⩽ 𝜏(𝑥1), so we need to show that 𝜏(𝑥𝜆) > 𝜏(𝑥0).

Since 𝜏 possesses L̃𝜏, we have

log (1 + 𝜏(𝑥𝜆)) ⩾ 𝜆 log (1 + 𝜏(𝑥0)) + (1 − 𝜆) log (1 + 𝜏(𝑥1)) . (35)

Exponentiating both sides, we have

1 + 𝜏(𝑥𝜆) ⩾ (1 + 𝜏(𝑥0))𝜆 (1 + 𝜏(𝑥1))1−𝜆
. (36)

Since 𝜏(𝑥0) ⩽ 𝜏(𝑥1), we have 1 + 𝜏(𝑥0) ⩽ 1 + 𝜏(𝑥1), and thus

1 + 𝜏(𝑥𝜆) ⩾ (1 + 𝜏(𝑥0))𝜆 (1 + 𝜏(𝑥0))1−𝜆
= 1 + 𝜏(𝑥0). (37)

Rearranging, we have 𝜏 (𝑥𝜆) ⩾ 𝜏(𝑥0), as desired.

We define the following metric for the space of technologies.

37 Definition
For technologies 𝜏0 , 𝜏1 ∈ T , we define the distance17

𝑑 (𝜏0 , 𝜏1) = ∑
𝑛∈N

1
2𝑛 ×

max𝑥∈[0,𝑛]𝐿 ∣𝜏0(𝑥) − 𝜏1(𝑥)∣
1 + max𝑥∈[0,𝑛]𝐿 ∣𝜏0(𝑥) − 𝜏1(𝑥)∣

Let us confirm that 𝑑 is a metric.

17Since [0, 𝑛]𝐿 is compact for all 𝑛 ∈ N and the map 𝑥 ↦ ∣𝜏0(𝑥) − 𝜏1(𝑥)∣ is continuous, we
have taken the liberty of writing “max” in place of “sup” for 𝑑.
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38 Lemma
𝑑 is a metric on T .

Proof. We need to show that 𝑑 satisfies the properties of a metric.

1. Codomain: we need to show that for all 𝜏0 , 𝜏1 ∈ T , we have 𝑑 (𝜏0 , 𝜏1) ∈ R⩾0.
As we are taking maxima of absolute values, non-negativity is immediate.
For finiteness, we observe that

𝑑 (𝜏0 , 𝜏1) = ∑
𝑛∈N

1
2𝑛 ×

max𝑥∈[0,𝑛]𝐿 ∣𝜏0(𝑥) − 𝜏1(𝑥)∣
1 + max𝑥∈[0,𝑛]𝐿 ∣𝜏0(𝑥) − 𝜏1(𝑥)∣

< ∑
𝑛∈N

1
2𝑛 × 1 = 1 < ∞.

(38)

Thus, 𝑑 (𝜏0 , 𝜏1) ∈ R⩾0, and we officially write 𝑑 ∶ T × T → [0, 1).

2. Identity of Indiscernibles: we need to show that for all 𝜏0 , 𝜏1 ∈ T , we have
𝑑 (𝜏0 , 𝜏1) = 0 if and only if 𝜏0 = 𝜏1. For the first direction, suppose that
𝑑 (𝜏0 , 𝜏1) = 0. Since 𝑋 = ⋃𝑛∈N [0, 𝑛]𝐿, 𝑑 (𝜏0 , 𝜏1) = 0 implies 𝜏0(𝑥) =

𝜏1(𝑥) for all 𝑥 ∈ 𝑋 , implying 𝜏0 = 𝜏1. The other direction is immediate.

3. Symmetry: we need to show that for all 𝜏0 , 𝜏1 ∈ T , we have 𝑑 (𝜏0 , 𝜏1) =

𝑑 (𝜏1 , 𝜏0). This is immediate from the symmetry of 𝑑0 and 𝑑1.

4. Triangle Inequality: we need to show that for all 𝜏0 , 𝜏1 , 𝜏2 ∈ T , we have
𝑑 (𝜏0 , 𝜏2) ⩽ 𝑑 (𝜏0 , 𝜏1) + 𝑑 (𝜏1 , 𝜏2). Consider any fixed 𝑛 ∈ N, and define
the functions

𝜓𝑛 (𝜏0 , 𝜏1) = max
𝑥∈[0,𝑛]𝐿

∣𝜏0(𝑥) − 𝜏1(𝑥)∣ , and

𝜉(𝜓) = 𝜓
1 + 𝜓

,
(39)

where 𝜉 ∶ R⩾0 → [0, 1). The 𝑛th component of the sum defining 𝑑

is proportional to 𝜉 (𝜓𝑛 (𝜏0 , 𝜏1)). Let us show that 𝜓𝑛 is subadditive;
choose and fix any 𝜏0 , 𝜏1 , 𝜏2 ∈ T , and let 𝑥𝑛 ∈ [0, 𝑛]𝐿 be a maximizer of
𝜓𝑛 (𝜏0 , 𝜏2). Then, we have

𝜓𝑛 (𝜏0 , 𝜏2) = ∣𝜏0 (𝑥𝑛) − 𝜏2 (𝑥𝑛)∣
= ∣𝜏0 (𝑥𝑛) − 𝜏1 (𝑥𝑛) + 𝜏1 (𝑥𝑛) − 𝜏2 (𝑥𝑛)∣
⩽ ∣𝜏0 (𝑥𝑛) − 𝜏1 (𝑥𝑛)∣ + ∣𝜏1 (𝑥𝑛) − 𝜏2 (𝑥𝑛)∣
⩽ 𝜓𝑛 (𝜏0 , 𝜏1) + 𝜓𝑛 (𝜏1 , 𝜏2) .

(40)
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The zeroth step is because 𝑥𝑛 is a maximizer of 𝜓𝑛 (𝜏0 , 𝜏2); the first step
simply substracts and adds 𝜏1 (𝑥𝑛); the second step is because the absolute
value function is subadditive; and the third step is from the definition of
𝜓𝑛 . We therefore have shown that 𝜓𝑛 is subadditive.

Now, consider 𝜉. Because 𝜉 is increasing, (40) implies

𝜉 (𝜓𝑛 (𝜏0 , 𝜏2)) ⩽ 𝜉 (𝜓𝑛 (𝜏0 , 𝜏1) + 𝜓𝑛 (𝜏1 , 𝜏2)) . (41)

Because 𝜉 is itself subadditive for non-negative arguments, (41) implies

𝜉 (𝜓𝑛 (𝜏0 , 𝜏2)) ⩽ 𝜉 (𝜓𝑛 (𝜏0 , 𝜏1)) + 𝜉 (𝜓𝑛 (𝜏1 , 𝜏2)) . (42)

We have shown that the 𝑛th component of the sum defining 𝑑 is subaddi-
tive. Since 𝑛 was arbitrary, we have shown that 𝑑 (𝜏0 , 𝜏2) ⩽ 𝑑 (𝜏0 , 𝜏1) +
𝑑 (𝜏1 , 𝜏2).

We have shown that 𝑑 is a metric on T .

Naturally, we use this metric to topologize the space of technologies.

39 Definition
The topology on T is the topology induced by the metric 𝑑.

Thus, the open sets in T are the unions of open balls of the form

𝐵𝜖 (𝜏) = {𝜏′ ∈ T »»»»» 𝑑 (𝜏, 𝜏
′) < 𝜖} , (43)

for all 𝜏 ∈ T and 𝜖 > 0.
As a matter of course, we now define convergence in the space of technologies,

which is standard uniform convergence on compact subsets of 𝑋 .

40 Definition
Let {𝜏𝑛}𝑛∈N be a sequence of technologies in T , and let 𝜏 ∈ T be a technology. We say
that {𝜏𝑛}𝑛∈N converges to 𝜏 under 𝑑 just in case for all 𝑛 ∈ N and 𝐾 ∈ K(𝑋), we
have

sup
𝑥∈𝐾

∣𝜏𝑛(𝑥) − 𝜏(𝑥)∣ → 0 as 𝑛 → ∞.
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Because the domain 𝑋 = R𝐿
⩾0 is covered by the ascending sequence of com-

pact boxes [0, 𝐾]𝐿, convergence on all compact subsets of 𝑋 is equivalent to
convergence on each such box.

The next result plays a key role early in the proof of the proposition around
which Section 2 is built.

41 Lemma
There exists a continuous function

𝑥 ∶ 𝑀 × T ⟶ 𝑋

such that 𝜏 (𝑥(𝑚, 𝜏)) = 𝑚 for all 𝑚 ∈ 𝑀 and all 𝜏 ∈ T .

Proof. We will prove this lemma in two steps. The first involves constructing
a continuous selection from the upper contour set of 𝜏. The second scales this
selector to ensure that 𝜏 (𝜉(𝑚, 𝜏, 𝜅)) = 𝑚, not just 𝜏 (𝜉(𝑚, 𝜏, 𝜅)) ⩾ 𝑚.

Step 1: there exists a continuous selection from the upper contour set of 𝜏. We will
appeal to the Michael selection theorem (Aliprantis and Border, 2006, Theorem
17.66, pp. 589–590) for the map

𝜓 ∶ 𝑀 × T ⇉ 𝑋,

(𝑚, 𝜏) ↦ {𝑥 ∈ 𝑋 ∣ 𝜏(𝑥) ⩾ 𝑚} . (44)

This introduces a few requirements.

1. Requirement 1: the domain 𝑀 × T must be paracompact. It is well-known
that the product of two paracompact spaces need not be paracompact, so
we need a stronger condition for at least one of the spaces. Morita (1963,
Theorem 1) showed that the product 𝑋 × 𝑌 is normal and paracompact
if 𝑋 is normal, paracompact, and 𝜎-locally compact and 𝑌 is normal and
paracompact.

(a) 𝑀 is normal, paracompact, and 𝜎-locally compact. Being a subspace of
the metrizable space R, 𝑀 ≔ R⩾0 is metrizable; since any metrizable
space is perfectly normal (Aliprantis and Border, 2006, Corollary 3.21,
p. 81) and paracompact (Aliprantis and Border, 2006, Theorem 3.22,
pp. 81–83), we conclude that 𝑀 is normal and paracompact. For
𝜎-local compactness, we observe that

𝑀 ≔ R⩾0 = ⋃
𝑛∈N

[0, 𝑛] , (45)
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which is a countable union of locally compact spaces. We conclude
that 𝑀 is 𝜎-locally compact. 𝑀, then, may serve as the “𝑋” in
Morita’s theorem.

(b) T is normal and paracompact. We have already constructed a metric 𝑑𝜏
on T , so T equipped with the metric topology is metrizable; once
again, we conclude that T is normal and paracompact. T , then, may
serve as the “𝑌” in Morita’s theorem.

Thus, Morita’s theorem ensures that the product 𝑀 × T is normal and
paracompact, so it satisfies Requirement 1.

2. Requirement 2: the codomain 𝑋 = R𝐿
⩾0 must be a Fréchet space—this means

it must be completely metrizable and locally convex. Equip 𝑋 with the
Euclidean metric, and observe that this metric is complete on 𝑋 because 𝑋
is a closed subspace of the complete space R𝐿. Being globally convex, 𝑋 is
locally convex. We conclude that the codomain 𝑋 satisfies Requirement 2.

3. Requirement 3: the map 𝜓 must take nonempty, closed, and convex values.
Choose any (𝑚, 𝜏) ∈ 𝑀 × T . We must show that the set

{𝑥 ∈ 𝑋 ∣ 𝜏(𝑥) ⩾ 𝑚}

is nonempty, closed, and convex. Nonemptiness follows because 𝜏 has
S𝜏. Closedness follows because 𝜏 has C𝜏 and this set is the preimage of
the closed set [𝑚,∞) under 𝜏. Convexity follows because 𝜏 has Q̃𝜏. We
conclude that the map 𝜓 satisfies Requirement 3.

4. Requirement 4: the map 𝜓 must be lower hemicontinuous. Choose any open
set 𝑉 ⊆ 𝑋 , and consider the preimage 𝜓−1(𝑉) ⊆ 𝑀 × T . Let (𝑚0 , 𝜏0) ∈
𝜓−1(𝑉), meaning there exists 𝑥0 ∈ 𝑉 such that 𝑥0 ∈ 𝜓(𝑚0 , 𝜏0)—that is,
𝜏0(𝑥0) ⩾ 𝑚0.

We seek a neighborhood of (𝑚0 , 𝜏0) such that for all (𝑚, 𝜏) in this neighbor-
hood, we have 𝜓(𝑚, 𝜏) ∩𝑉 ≠ ∅. We do this by showing that 𝑥0 remains
in the upper contour set of 𝜏 at 𝑚 across that neighborhood. Note that
the map (𝑚, 𝜏) ↦ 𝜏(𝑥0) − 𝑚 is continuous. Since 𝜏0(𝑥0) − 𝑚0 ⩾ 0, there
exists 𝜀 > 0 and a neighborhood𝑈 of (𝑚0 , 𝜏0) such that for all (𝑚, 𝜏) ∈ 𝑈 ,
we have 𝜏(𝑥0) − 𝑚 > −𝜀. Choosing 𝜀 small enough ensures 𝜏(𝑥0) ⩾ 𝑚

throughout𝑈 . Thus, for all (𝑚, 𝜏) ∈ 𝑈 , we have 𝑥0 ∈ 𝜓(𝑚, 𝜏) ∩𝑉 ≠ ∅,
and so (𝑚, 𝜏) ∈ 𝜓−1(𝑉). This shows that 𝜓−1(𝑉) is open, and we con-
clude that 𝜓 is lower hemicontinuous. We therefore conclude that the map
𝜓 satisfies Requirement 4.
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These are all the requirements of the Michael selection theorem, so we conclude
that there exists a continuous selector 𝜉 ∶ 𝑀×T → 𝑋 such that 𝜏 (𝜉(𝑚, 𝜏)) ⩾ 𝑚
for all 𝑚 ∈ 𝑀 and 𝜏 ∈ T .

Step 2: we scale the selector to ensure that 𝜏 (𝑥(𝑚, 𝜏)) = 𝑚. For any 𝑚 ∈ 𝑀 and
𝜏 ∈ T , consider the function

𝜂𝑚,𝜏 ∶ [0, 1] ⟶ 𝑀,

𝑡 ⟼ 𝜏 (𝑡𝜉(𝑚, 𝜏)) . (46)

We observe that 𝜂𝑚,𝜏 is continuous, that 𝜂𝑚,𝜏(0) = 0, and that 𝜂𝑚,𝜏(1) =

𝜏 (𝜉(𝑚, 𝜏)) ⩾ 𝑚. By the intermediate value theorem, there exists some 𝑡∗𝑚,𝜏 ∈

[0, 1] such that 𝜂𝑚,𝜏(𝑡∗𝑚,𝜏) = 𝑚. Moreover, since 𝜏 possesses M̃𝜏, 𝜂𝑚,𝜏 is strictly
increasing in 𝑡. This implies that 𝑡∗𝑚,𝜏 is uniquely defined in [0, 1].

We now argue that the map (𝑚, 𝜏) ↦ 𝑡
∗
𝑚,𝜏 is continuous. To do so, observe

that the function

[0, 1] ×𝑀 × T ⟶ 𝑀

(𝑡 , 𝑚, 𝜏) ⟼ 𝜏 (𝑡𝜉(𝑚, 𝜏)) − 𝑚
(47)

is jointly continuous in all arguments, as 𝜏 is continuous, scalar multiplication
is continuous, and the selection function 𝜉 was constructed to be continuous
in (𝑚, 𝜏). Moreover, for each fixed (𝑚, 𝜏), the map 𝑡 ↦ 𝜏(𝑡𝜉(𝑚, 𝜏)) is strictly
increasing on [0, 1], so the zero set of this function is a singleton. Thus, the
zero set of the function (𝑡 , 𝑚, 𝜏) ↦ 𝜏(𝑡𝜉(𝑚, 𝜏))−𝑚 is a continuous function of
(𝑚, 𝜏), and we conclude that the map (𝑚, 𝜏) ↦ 𝑡

∗
𝑚,𝜏 is continuous.

Conclusion. Finally, we define the continuous selector

𝑥(𝑚, 𝜏) ≔ 𝑡
∗
𝑚,𝜏𝜉(𝑚, 𝜏). (48)

We observe that 𝑥(𝑚, 𝜏) is continuous in (𝑚, 𝜏), and that

𝜏 (𝑥(𝑚, 𝜏)) = 𝜏 (𝑡∗𝑚,𝜏𝜉(𝑚, 𝜏)) = 𝜂𝑚,𝜏 (𝑡∗𝑚,𝜏) = 𝑚. (49)

This completes the proof of the lemma.

A.3 Preliminaries on Cost Functions

Again, we restate our assumptions about the cost function.
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5 Definition
The state’s cost function is a function

𝜅 ∶ 𝑋 ⟶ R.

We assume 𝜅 possesses the following properties:

1. Continuity (C𝜅): 𝜅 is continuous;

2. Centeredness (0𝜅): 𝜅(0) = 0;

3. Coerciveness (O𝜅): 𝜅(𝑥) → ∞ as ∥𝑥∥ → ∞;

4. Strict Monotonicity (M𝜅): 𝜅 is strictly increasing in all commodities; and

5. Strict Exp-Convexity (L𝜅): the map

𝑥 ⟼ exp (𝜅(𝑥))

is strictly convex.

We denote the set of all such functions by K.

As with technologies, we observe that the shape condition entails quasiconvexity.

42 Lemma
If 𝜅 possesses L𝜅, then it also possesses Strict Quasiconvexity (Q𝜅): for all 𝑥0 , 𝑥1 ∈ 𝑋

and all 𝜆 ∈ (0, 1),

𝑥0 ≠ 𝑥1 ⟹ 𝜅 (𝜆𝑥0 + (1 − 𝜆)𝑥1) < max {𝜅(𝑥0), 𝜅(𝑥1)} .

Proof. Let 𝜅 satisfy L𝜅, and let 𝑥0 , 𝑥1 ∈ 𝑋 with 𝑥0 ≠ 𝑥1. Choose any 𝜆 ∈ (0, 1),
and define 𝑥𝜆 ≔ 𝜆𝑥0 + (1 − 𝜆)𝑥1.

Let us assume without loss of generality that 𝜅(𝑥0) ⩾ 𝜅(𝑥1). Then

exp(𝜅(𝑥𝜆)) < (1 − 𝜆) exp(𝜅(𝑥0)) + 𝜆 exp(𝜅(𝑥1))
< (1 − 𝜆) exp(𝜅(𝑥0)) + 𝜆 exp(𝜅(𝑥0)) = exp(𝜅(𝑥0)),

(50)

where the first inequality follows from strict convexity of exp◦𝜅, and the second
from the assumption 𝜅(𝑥1) < 𝜅(𝑥0) ⇒ exp(𝜅(𝑥1)) < exp(𝜅(𝑥0)). Taking
logarithms (which preserves strict inequality because log is strictly increasing),
we obtain:

𝜅(𝑥𝜆) < 𝜅(𝑥0) = max{𝜅(𝑥0), 𝜅(𝑥1)}, (51)

which is what we wanted to show. We conclude that 𝜅 possesses Q𝜅.
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We impose the same metric on the space of cost functions.

43 Definition
For cost functions 𝜅0 , 𝜅1 ∈ K, we define the distance18

𝑑 (𝜅0 , 𝜅1) = ∑
𝑛∈N

1
2𝑛 ×

max𝑥∈[0,1]𝐿 ∣𝜅0(𝑥) − 𝜅1(𝑥)∣
1 + max𝑥∈[0,1]𝐿 ∣𝜅0(𝑥) − 𝜅1(𝑥)∣

.

And again, we topologize the space of cost functions with the metric 𝑑𝜅.

44 Definition
The topology on K is the topology induced by the metric 𝑑𝜅.

A.4 For Section 2

Let us recall that the state’s production problem is to choose a resource investment
𝑥 ∈ 𝑋 that minimizes the cost of production 𝜅(𝑥) while satisfying the desired
force level 𝑚 given the militarization technology 𝜏.

6 Definition
Given a desired force level 𝑚 ∈ 𝑀, a militarization technology 𝜏 ∈ T , and a cost
function 𝜅 ∈ K, the state’s production problem is

min
𝑥∈𝑋

𝜅(𝑥) subject to 𝜏(𝑥) = 𝑚. SPP (𝑚, 𝜏, 𝜅)

We take on the traditional questions, attempting to show that:

1. Problem SPP (𝑚, 𝜏, 𝜅) has a solution for all 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K;

2. this solution is unique for all 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K; and

3. this solution varies continuously with 𝑚, 𝜏, and 𝜅.

The following is a useful start to this endeavor.

18We will now use 𝑑𝜏 to denote the metric on T and 𝑑𝜅 to denote the metric on K. But notice
that they work exactly the same way, and indeed they’re even well defined if we attempted to
measure the distance between a technology and a cost function. But we won’t do that.
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45 Lemma
There exists a continuous function

𝑥
max

∶ 𝑀 × T ×K ⟶ 𝑋

such that, for all (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T ×K, we have

𝑥 solves SPP (𝑚, 𝜏, 𝜅) ⟹ 𝑥 ∈ ∏
ℓ∈𝐿

[0, 𝑥max
ℓ (𝑚, 𝜏, 𝜅)]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
≔𝑋max(𝑚,𝜏,𝜅)

.

Moreover, for all (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T ×K, we have 𝑥(𝑚, 𝜏) ∈ 𝑋max(𝑚, 𝜏, 𝜅), where
𝑥(𝑚, 𝜏) is the continuous selector from Lemma 41.

Proof. Choose any 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K. Lemma 41 guarantees the
existence of a continuous selector 𝑥(𝑚, 𝜏) such that 𝜏 (𝑥(𝑚, 𝜏)) = 𝑚, and we
choose such a selector. We do not eliminate any minimizers by adding the
requirement that 𝜅 (𝑥) ⩽ 𝜅 (𝑥(𝑚, 𝜏)), as this is satisfied by all 𝑥 that solve
SPP (𝑚, 𝜏, 𝜅).

Now, for all ℓ ∈ 𝐿 and all 𝜆 ∈ R⩾0, we define the mobilization vector

𝜆ℓ = 𝜆𝑒ℓ ∈ R𝐿
⩾0 , (52)

where 𝑒ℓ is the ℓ th unit vector in R𝐿. We observe that

𝜅 (0ℓ) = 0 and [𝜆 → ∞ ⇒ ∥𝜆ℓ∥ → ∞ ⇒ lim
𝜆→∞

𝜅 (𝜆ℓ) = ∞] , (53)

where the second implication is because 𝜅 possesses O𝜅. Since 𝜅 possesses C𝜅,
we may appeal to the intermediate value theorem to conclude that there exists
some 𝜆max

ℓ ∈ R⩾0 such that

𝜅 (𝜆max
ℓ 𝑒ℓ) = 𝜅 (𝑥(𝑚, 𝜏)) . (54)

And since 𝜅 possesses M𝜅, this 𝜆max
ℓ is unique.

It remains to show that 𝜆max
ℓ is continuous in (𝑚, 𝜏, 𝜅). Define

𝐹 (𝜆;𝑚, 𝜏, 𝜅) = 𝜅 (𝜆𝑒ℓ) − 𝜅 (𝑥 (𝑚, 𝜏)) , (55)

which is jointly continuous in 𝜆 and (𝑚, 𝜏, 𝜅). Observe that 𝜆max
ℓ is the unique

solution to 𝐹 (𝜆;𝑚, 𝜏, 𝜅) = 0 and that 𝐹 is strictly increasing in 𝜆. Thus, the root
𝜆max
ℓ varies continuously in (𝑚, 𝜏, 𝜅).
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Finally, we define the continuous function

𝑥
max
ℓ (𝑚, 𝜏, 𝜅) ≔ 𝜆

max
ℓ ∈ R⩾0. (56)

The bounding box𝑋max(𝑚, 𝜏, 𝜅) ≔ ∏ℓ∈𝐿 [0, 𝑥
max
ℓ (𝑚, 𝜏, 𝜅)] is a compact subset

of 𝑋 guaranteed to contain all solutions to SPP (𝑚, 𝜏, 𝜅).
For the final claim, we recall that 𝜆max

ℓ is the unique scalar satisfying

𝜅 (𝜆max
ℓ 𝑒ℓ) = 𝜅 (𝑥(𝑚, 𝜏)) . (57)

Since 𝜅 possesses M𝜅, it follows that

𝑥
ℓ(𝑚, 𝜏) ⩽ 𝜆

max
ℓ for all ℓ ∈ 𝐿; (58)

were such not the case, then 𝑥(𝑚, 𝜏) would cost strictly more than 𝜆max
ℓ 𝑒ℓ

does in the ℓ th commodity and at least as much as 𝜆max
ℓ 𝑒ℓ does in all other

commodities, meaning their costs could not be equal. Thus, we have shown that
𝑥(𝑚, 𝜏) ∈ 𝑋max(𝑚, 𝜏, 𝜅), as claimed. This completes the proof of the lemma.

Thus, we have shown that there exists a compact bounding box 𝑋max(𝑚, 𝜏, 𝜅)
that contains all solutions to the state’s production problem SPP (𝑚, 𝜏, 𝜅) for
all 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K. Moreover, the bounds of this bounding box
vary continuously with (𝑚, 𝜏, 𝜅). As a result, we can use this bounding box to
construct a continuous constraint set for the state’s production problem.

46 Lemma
The correspondence

𝑋
max

∶ 𝑀 × T ×K ⇉ 𝑋

is upper and lower hemicontinuous.

Proof. We address upper and lower hemicontinuity in turn.

Upper hemicontinuity. Let V ⊆ 𝑋 be open such that 𝑋max(𝑚∗
, 𝜏∗ , 𝜅∗) ⊆ V

for some (𝑚∗
, 𝜏∗ , 𝜅∗) ∈ 𝑀 × T × K. We need to show that there exists a

neighborhood U of (𝑚∗
, 𝜏∗ , 𝜅∗) such that for all (𝑚, 𝜏, 𝜅) ∈ U , we have

𝑋
max(𝑚, 𝜏, 𝜅) ⊆ V . (59)

Since V is open and 𝑋max(𝑚∗
, 𝜏∗ , 𝜅∗) ⊆ V , there exists 𝜀 > 0 such that the open

box 𝐵𝜀(𝑋max(𝑚∗
, 𝜏∗ , 𝜅∗)) ⊆ V . Now note: for each ℓ ∈ 𝐿, the continuity of
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𝑥
max
ℓ implies the existence of an open neighborhood Uℓ of (𝑚∗

, 𝜏∗ , 𝜅∗) such that
for all (𝑚, 𝜏, 𝜅) ∈ Uℓ , we have

𝑥
max
ℓ (𝑚, 𝜏, 𝜅) < 𝑥

max
ℓ (𝑚∗

, 𝜏
∗
, 𝜅

∗) + 𝜀. (60)

Define U ≔ ⋂ℓ∈𝐿 Uℓ , which is open and contains (𝑚∗
, 𝜏∗ , 𝜅∗). Then for every

(𝑚, 𝜏, 𝜅) ∈ U , we have 𝑋max(𝑚, 𝜏, 𝜅) ⊆ 𝐵𝜀(𝑋max(𝑚∗
, 𝜏∗ , 𝜅∗)) ⊆ V . Thus,

𝑋
max is upper hemicontinuous.

Lower hemicontinuity. Let V ⊆ 𝑋 be open, and suppose (𝑚∗
, 𝜏∗ , 𝜅∗) ∈ 𝑀 ×

T × K and 𝑥∗ ∈ 𝑋
max(𝑚∗

, 𝜏∗ , 𝜅∗) ∩ V . We need to show that there exists a
neighborhood U of (𝑚∗

, 𝜏∗ , 𝜅∗) such that for all (𝑚, 𝜏, 𝜅) ∈ U , we have

𝑋
max(𝑚, 𝜏, 𝜅) ∩ V ≠ ∅. (61)

SinceV is open and 𝑥∗ ∈ V , there exists 𝜀 > 0 such that the open box 𝐵𝜀(𝑥∗) ⊆ V .
Now note: for each ℓ ∈ 𝐿, the continuity of 𝑥max

ℓ implies the existence of an open
neighborhood Uℓ of (𝑚∗

, 𝜏∗ , 𝜅∗) such that for all (𝑚, 𝜏, 𝜅) ∈ Uℓ , we have

𝑥
max
ℓ (𝑚, 𝜏, 𝜅) > 𝑥

∗
ℓ − 𝜀. (62)

Define U ≔ ⋂ℓ∈𝐿 Uℓ , which is open and contains (𝑚∗
, 𝜏∗ , 𝜅∗).

Then for every (𝑚, 𝜏, 𝜅) ∈ U , we have 𝑋max(𝑚, 𝜏, 𝜅) ∩ 𝐵𝜀(𝑥∗) ≠ ∅. Since
𝐵𝜀(𝑥∗) ⊆ V , we conclude that 𝑋max(𝑚, 𝜏, 𝜅) ∩ V ≠ ∅. Thus, 𝑋max is lower
hemicontinuous.

This completes the proof that 𝑋max is continuous.

We now use this bounding box in tandem with the level set at 𝑚 to construct
a continuous constraint set for the state’s production problem.

47 Lemma
The correspondence

X ∶ 𝑀 × T ×K ⇉ 𝑋,

(𝑚, 𝜏, 𝜅) ↦ 𝑋
max(𝑚, 𝜏, 𝜅) ∩ 𝜏

−1 ({𝑚}) ,

is nonempty, compact-valued, and continuous.
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Proof. Choose any 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K. We will address nonemptiness,
compactness, and continuity in turn.

Nonemptiness. From Lemma 45, we know that the bounding box 𝑋max(𝑚, 𝜏, 𝜅)
contains 𝑥(𝑚, 𝜏), which is a continuous selector such that 𝜏 (𝑥(𝑚, 𝜏)) = 𝑚.
Thus, 𝑥(𝑚, 𝜏) ∈ 𝜏−1 ({𝑚}), and we conclude that X (𝑚, 𝜏, 𝜅) is nonempty.

Compactness. The bounding box 𝑋max(𝑚, 𝜏, 𝜅) is compact because it is a finite
product of compact intervals in R⩾0, and the level set 𝜏−1 ({𝑚}) is closed because
𝜏 possesses C𝜏. The intersection of a compact set with a closed set is compact, so
we conclude that X (𝑚, 𝜏, 𝜅) is compact.

Upper hemicontinuity. Aliprantis and Border (2006, Theorem 17.25, pp. 567–568)
demonstrate that the intersection of an upper hemicontinuous, compact-valued
correspondence with a closed-valued correspondence is upper hemicontinuous.
We observe that 𝑋max is upper hemicontinuous (by Lemma 46) and compact-
valued (by construction), and that𝜏−1 ({𝑚}) is closed-valued because 𝜏 possesses
C𝜏. Thus, we conclude that X is upper hemicontinuous.

Lower hemicontinuity. Choose (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T × K, and suppose 𝑉 ⊆ 𝑋 is
an open set satisfying 𝑉 ∩ X (𝑚, 𝜏, 𝜅) ≠ ∅. Then there exists some 𝑥 ∈ 𝑉

such that 𝑥 ∈ X (𝑚, 𝜏, 𝜅), meaning that 𝑥 ∈ 𝑋
max(𝑚, 𝜏, 𝜅) and 𝜏(𝑥) = 𝑚. We

need to identify a neighborhood𝑈 ⊆ 𝑀 × T × K of (𝑚, 𝜏, 𝜅) such that for all
(𝑚′

, 𝜏′ , 𝜅′) ∈ 𝑈 , we have 𝑉 ∩ X (𝑚′
, 𝜏′ , 𝜅′) ≠ ∅. By the continuity of 𝑋max

(from Lemma 46), we can choose a neighborhood𝑈1 ⊆ 𝑀 × T ×K of (𝑚, 𝜏, 𝜅)
such that for all (𝑚′

, 𝜏′ , 𝜅′) ∈ 𝑈1, we have

𝑥 ∈ 𝑋
max (𝑚′

, 𝜏
′
, 𝜅

′) . (63)

Since 𝜏 possesses C𝜏, we can also choose a neighborhood𝑈2 ⊆ 𝑀 × T of (𝑚, 𝜏)
such that for all (𝑚′

, 𝜏′) ∈ 𝑈2, we have

𝜏(𝑥) = 𝑚 ⟹ 𝑥 ∈ 𝜏
−1 ({𝑚′}) . (64)

Now define

U ≔ 𝑈1 ∩ (𝑈2 ×K) ⊆ 𝑀 × T ×K. (65)

Being a finite intersection of open sets, U is open and contains (𝑚, 𝜏, 𝜅). We
claim that for all (𝑚′

, 𝜏′ , 𝜅′) ∈ U , we have

𝑉 ∩ X (𝑚′
, 𝜏

′
, 𝜅

′) ≠ ∅. (66)
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To see this, observe that for all (𝑚′
, 𝜏′ , 𝜅′) ∈ U , we have

𝑥 ∈ 𝑋
max (𝑚′

, 𝜏
′
, 𝜅

′) and 𝑥 ∈ 𝜏
−1 ({𝑚′}) . (67)

Thus, we conclude that 𝑥 ∈ X (𝑚′
, 𝜏′ , 𝜅′), meaning that𝑉 ∩ X (𝑚′

, 𝜏′ , 𝜅′) ≠ ∅,
as required. This completes the proof of the lemma.

Having done all the heavy lifting, we can now move on to the main results
of the section. First, we demonstrate that the state’s production problem has a
solution for all 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K.

48 Lemma
For all 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K, SPP (𝑚, 𝜏, 𝜅) has a solution.

Proof. This follows immediately from Lemma 45: any solution to SPP (𝑚, 𝜏, 𝜅)
must lie in the compact set 𝑋max(𝑚, 𝜏, 𝜅), which is nonempty by Lemma 46.
The cost function 𝜅 possesses C𝜅, so SPP (𝑚, 𝜏, 𝜅) is a continuous optimization
problem overa compact set, and thus ithas a solution—this is from the Weierstrass
extreme value theorem.

Next, we show that the solution to the state’s production problem is unique for all
𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K, a simple consequence of our convexity assumptions
about technologies and cost functions.

49 Lemma
For all 𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K, SPP (𝑚, 𝜏, 𝜅) has a unique solution.

Proof. Choose any𝑚 ∈ 𝑀, 𝜏 ∈ T , and 𝜅 ∈ K. For sake of contradiction, suppose
that there exist two distinct solutions 𝑥0 , 𝑥1 ∈ 𝑋 to SPP (𝑚, 𝜏, 𝜅). Thus, our
assumption implies that

𝜅 (𝑥0) = 𝜅 (𝑥1) = min
𝑥∈𝑋

𝜅(𝑥) and (68)

𝜏 (𝑥0) = 𝜏 (𝑥1) = 𝑚. (69)

Since 𝑋 is convex, we may define

𝑥1/2 ≔
1
2𝑥0 +

1
2𝑥1 ∈ 𝑋. (70)
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Since 𝜅 possesses Q𝜅, 𝑥0 ≠ 𝑥1 implies

𝜅 (𝑥1/2) < min {𝜅 (𝑥0) , 𝜅 (𝑥1)} = 𝜅 (𝑥0) = 𝜅 (𝑥1) .

Since 𝜏 possesses Q̃𝜏, 𝑥0 ≠ 𝑥1 implies

𝜏 (𝑥1/2) ⩾ 𝜏 (𝑥0) = 𝜏 (𝑥1) = 𝑚. (71)

In case 𝜏 (𝑥1/2) = 𝑚, we have found a contradiction to the optimality of 𝑥0 and
𝑥1 because

𝜅 (𝑥1/2) < min {𝜅 (𝑥0) , 𝜅 (𝑥1)} = 𝜅 (𝑥0) = 𝜅 (𝑥1) . (72)

Thus, we may suppose without loss of generality that 𝜏 (𝑥1/2) > 𝑚. Define the
function

𝜂 ∶ [0, 1] ⟶ 𝑀

𝑡 ⟼ 𝜏 (𝑡𝑥1/2)
(73)

and observe that 𝜂(0) = 𝜏 (0) = 0 and 𝜂(1) = 𝜏 (𝑥1/2) > 𝑚. Moreover, 𝜂
is continuous because 𝜏 possesses C𝜏 and 𝑥1/2 does not depend on 𝑡. By the
intermediate value theorem, there exists some 𝑡∗ ∈ (0, 1) such that 𝜂(𝑡∗) = 𝑚.
But then, the fact that 𝜅 possesses M𝜅 implies that

𝜅 (𝑡∗𝑥1/2) < min {𝜅 (𝑥0) , 𝜅 (𝑥1)} = 𝜅 (𝑥0) = 𝜅 (𝑥1) , (74)

which contradicts the fact that 𝑥0 and 𝑥1 are both solutions to SPP (𝑚, 𝜏, 𝜅).
Thus, we conclude that the solution to SPP (𝑚, 𝜏, 𝜅) is unique.

We pause to record the main-text statement of the previous two lemmas.

8 Lemma
For all (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T ×K, SPP (𝑚, 𝜏, 𝜅) admits a unique solution. [Proof .]

Proof. This is a restatement of Lemmas 48 and 49, which the reader may find
immediately above. [Back to the text.]

Finally, we show that the solution to the state’s production problem varies
continuously with 𝑚, 𝜏, and 𝜅.

9 Lemma
The solution to SPP (𝑚, 𝜏, 𝜅) varies continuously with 𝑚, 𝜏, and 𝜅. [Proof .]
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Proof. We will appeal to Berge’s theorem (Aliprantis and Border, 2006, Theorem
17.31, pp. 570–571). In Lemma 47, we showed that the correspondence X is
nonempty, compact-valued, and continuous; this is just what is required on
constraint sets. As for the objective function, note that the map

(𝑥;𝜅) ⟼ 𝜅(𝑥) (75)

is continuous in 𝑥 and 𝜅 because 𝜅 possesses C𝜅. This is just what is required on
objective functions. Thus, we apply Berge’s theorem to conclude that the solution
to SPP (𝑚, 𝜏, 𝜅) varies continuously with 𝑚, 𝜏, and 𝜅. [Back to the text.]

Having obtained the main results about SPP (𝑚, 𝜏, 𝜅), we now turn to naming
the solutions. We first consider the raw solution to the state’s production problem,
which we denote by 𝑥∗(𝑚, 𝜏, 𝜅).

50 Definition
For all (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T × K, let 𝑥∗(𝑚, 𝜏, 𝜅) be the raw solution to the state’s
production problem SPP (𝑚, 𝜏, 𝜅). The set of all raw solutions is denoted by

Raw ≔ {𝑥∗(𝑚, 𝜏, 𝜅) ∈ 𝑋 ∣ (𝑚, 𝜏, 𝜅) ∈ 𝑀 × T ×K} .

Ournext theoreticalmaneuver is to curry the raw solution to the state’s production
problem with respect to the militarization technology 𝜏 and the cost function 𝜅.

51 Definition
Define the curried solution function

𝜋𝜏,𝜅 ∶ 𝑀 ⟶ 𝑋

𝑚 ⟼ 𝑥
∗(𝑚, 𝜏, 𝜅).

The set of all curried solutions is denoted by

PT ×K ≔ {𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 ∣ (𝜏, 𝜅) ∈ T ×K} .

In other words, 𝜋𝜏,𝜅 is the function that maps each desired force level 𝑚 ∈ 𝑀 to the
raw solution 𝑥∗(𝑚, 𝜏, 𝜅) to the state’s production problem SPP (𝑚, 𝜏, 𝜅) for the given
militarization technology 𝜏 and cost function 𝜅.
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We now have a complete definition of the state’s production problem, its solution,
and the curried solution function. We need to show that the curried solution
function is continuous with respect to the militarization technology 𝜏 and the
cost function 𝜅.

52 Lemma
The curried solution function 𝜋𝜏,𝜅 is continuous with respect to the militarization
technology 𝜏 and the cost function 𝜅 when the function space 𝑋𝑀 is endowed with the
compact-open topology. In other words, for all (𝜏∗ , 𝜅∗) ∈ T ×K, the map

M ∶ T ×K ⟶ 𝑋
𝑀
,

(𝜏, 𝜅) ⟼ 𝜋𝜏,𝜅

is continuous at (𝜏∗ , 𝜅∗) in the compact-open topology. Even more explicitly, for all
𝜀 > 0, there exists a neighborhood U of (𝜏∗ , 𝜅∗) such that for all (𝜏, 𝜅) ∈ U , we have

∥𝜋𝜏,𝜅 − 𝜋𝜏∗ ,𝜅∗∥ < 𝜀,

where ∥⋅∥ is the supremum norm on 𝑋𝑀 .

Proof. Choose any (𝜏∗ , 𝜅∗) ∈ T × K and any 𝜀 > 0. Let 𝐾 ⊆ 𝑀 be any
compact subset. By Lemma 9, the raw solution map (𝑚, 𝜏, 𝜅) ↦ 𝑥

∗(𝑚, 𝜏, 𝜅)
is jointly continuous, and thus it is uniformly continuous on the compact set
𝐾 × {𝜏∗} × {𝜅∗}. Thus, there exists a neighborhood U of (𝜏∗ , 𝜅∗) such that for
all (𝜏, 𝜅) ∈ U , we have

sup
𝑚∈𝐾

∥𝑥∗(𝑚, 𝜏, 𝜅) − 𝑥
∗(𝑚, 𝜏∗ , 𝜅∗)∥ < 𝜀. (76)

Since 𝜋𝜏,𝜅(𝑚) = 𝑥
∗(𝑚, 𝜏, 𝜅), this implies

sup
𝑚∈𝐾

∥𝜋𝜏,𝜅(𝑚) − 𝜋𝜏∗ ,𝜅∗(𝑚)∥ < 𝜀, (77)

which shows that the map (𝜏, 𝜅) ↦ 𝜋𝜏,𝜅 is continuous at (𝜏∗ , 𝜅∗) in the compact-
open topology on 𝑋𝑀 . This completes the proof of the lemma.

We now give the main text statement of the previous lemma.
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10 Corollary
The policy function 𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 varies continuously with 𝜏 and 𝜅. [Proof .]

Proof. This is a restatement of Lemma 52, which the reader may find immediately
above. [Back to the text.]

Our final lemma for Section 2 demonstrates that the function spaces T and
K are both contractible with respect to the compact-open topology.

12 Lemma
The function spaces T and K are contractible. [Proof .]

Proof. We will construct homotopies for both T and K.

Homotopy for T . We define the target function

𝜏0 (𝑥) = ∑
ℓ∈𝐿

log (1 + 𝑥ℓ) . (78)

Let us confirm that 𝜏0 ∈ T :

1. Ray-Surjectivity (R𝜏). We need to show that there exists a point 𝑣 ∈ 𝑋

such that the map

𝑡 ⟼ 𝜏0 (𝑡𝑣) ∶ R⩾0 ⟶ 𝑀 (79)

is continuous, strictly increasing, and surjective. Take 𝑣 = 1 = (1)ℓ∈𝐿.
Then for all 𝑡 ∈ R⩾0, we have

𝜏0 (𝑡𝑣) = ∑
ℓ∈𝐿

log (1 + 𝑡) = ∣𝐿∣ log (1 + 𝑡) . (80)

The map 𝑡 ↦ ∣𝐿∣ log (1 + 𝑡) is continuous and strictly increasing because
the logarithm is continuous and strictly increasing on R>0. At 𝑡 = 0, we
have ∣𝐿∣ log (1 + 0) = 0, so the map attains the minimum of 𝑀 = R⩾0.
Moreover, lim𝑡→∞ ∣𝐿∣ log (1 + 𝑡) = ∞; an appeal to the intermediate
value theorem shows that the map attains every value in 𝑀. Thus, the map
𝑡 ↦ 𝜏0 (𝑡𝑣) is continuous, strictly increasing, and surjective, as required.

2. Continuity (C𝜏). This is immediate because 𝜏0 is a finite sum of continuous
functions.
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3. Weak Monotonicity (M̃𝜏). Since 𝜏0 is smooth, we may compute the
gradient:

𝐷𝜏0 (𝑥) = ( 1
1 + 𝑥ℓ

)
ℓ∈𝐿

. (81)

Since 𝑥ℓ ⩾ 0 for all ℓ ∈ 𝐿, we have 1 + 𝑥ℓ > 0 for all ℓ ∈ 𝐿, and thus
𝐷𝜏0 (𝑥) > 0 for all 𝑥 ∈ 𝑋 .

4. Log-Concavity (L̃𝜏). We need to show that

ℎ(𝑥) = log (1 + 𝜏0(𝑥)) = log(1 +∑
ℓ∈𝐿

log (1 + 𝑥ℓ)) (82)

is concave in 𝑥. For fun, let us take the scenic route and compute the
first and second derivatives of this function. From the chain rule, the first
derivative is given by

𝐷ℎ(𝑥) = 1
1 + 𝜏0(𝑥)

𝐷𝜏0(𝑥),

= ( 1
1 +∑ℓ∈𝐿 log (1 + 𝑥ℓ)

) ( 1
1 + 𝑥ℓ

)
ℓ∈𝐿

.

(83)

Then by the product rule, the elements of the Hessian matrix are given by

𝐷
2
ℓℓ ℎ(𝑥) = −

1
(1 + 𝜏0(𝑥)) (1 + 𝑥ℓ)2 −

1
(1 + 𝜏0(𝑥))2 (1 + 𝑥ℓ)2 ,

𝐷
2
ℓ 𝑘ℎ(𝑥) = −

1
(1 + 𝜏0(𝑥))2 (1 + 𝑥ℓ) (1 + 𝑥𝑘)

for ℓ ≠ 𝑘.

(84)

We write the Hessian with the form

𝐷
2
ℎ(𝑥) = − ( 1

1 + 𝜏0(𝑥)
)𝐴 − ( 1

(1 + 𝜏0(𝑥))2) (𝐴 + 𝑢𝑢
⊺) ,

𝐴 ≔ diag( 1
(1 + 𝑥ℓ)2)

ℓ∈𝐿

,

𝑢 ≔ ( 1
1 + 𝑥ℓ

)
ℓ∈𝐿

.

(85)
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We observe that 𝐴, being a diagonal matrix with strictly positive entries, is
positive definite. Now choose any 𝑧 ∈ R𝐿 \ {0} and compute

𝑧
⊺
𝐷

2
ℎ(𝑥)𝑧 = − ( 1

1 + 𝜏0(𝑥)
) 𝑧⊺𝐴𝑧 − ( 1

(1 + 𝜏0(𝑥))2) 𝑧
⊺
𝐴𝑧

− ( 1
(1 + 𝜏0(𝑥))2) 𝑧

⊺
𝑢𝑢

⊺
𝑧.

(86)

The first two terms are negative because 𝐴 is positive definite and 1 +
𝜏0(𝑥) > 0. For the third term, observe that

𝑧
⊺
𝑢𝑢

⊺
𝑧 = (𝑧⊺𝑢)2

⩾ 0,

Equation (86) therefore implies that 𝑧⊺𝐷2
ℎ(𝑥)𝑧 < 0 for all 𝑧 ∈ R𝐿 \ {0},

which shows that ℎ is concave (in fact, strictly concave) in 𝑥.

We conclude that 𝜏0 satisfies all four properties, and thus 𝜏0 ∈ T .
Now we define the homotopy

𝐻 ∶ T × [0, 1] ⟶ T ,

(𝜏, 𝑡) ⟼ (1 + 𝜏)1−𝑡
× (1 + 𝜏0)𝑡 − 1.

(87)

We need to show that 𝐻 is continuous in (𝜏, 𝑡). Since T is metrized by 𝑑𝜏, it
suffices to show that for any 𝜖 > 0, there exists a neighborhood of (𝜏, 𝑡) such
that for all (𝜏′ , 𝑡 ′) sufficiently close to (𝜏, 𝑡), we have 𝑑 (𝐻 (𝜏′ , 𝑡 ′) , 𝐻(𝜏, 𝑡)) < 𝜖.
Fix any 𝑛 ∈ N. Over the compact set [0, 𝑛]𝐿, the map

(𝑥; 𝜏, 𝑡) ↦ 𝐻(𝜏, 𝑡)(𝑥) = (1 + 𝜏(𝑥))1−𝑡
× (1 + 𝜏0(𝑥))𝑡 − 1 (88)

is jointly continuous in (𝜏, 𝑡), since (𝜏, 𝑥) ↦ 𝜏(𝑥) is continuous under 𝑑, and
the arithmetic operations are smooth. Therefore, 𝑑𝜏 (𝐻(𝜏, 𝑡), 𝐻 (𝜏′ , 𝑡 ′)) is small
for small perturbations in (𝜏, 𝑡), and 𝐻 is continuous in 𝑑.

We also need to show that 𝐻 (𝜏, 𝑡) ∈ T for all 𝜏 ∈ T and 𝑡 ∈ [0, 1]. Choose
and fix any such 𝜏 ∈ T and 𝑡 ∈ [0, 1].

1. Ray-Surjectivity (R𝜏). Since 𝜏 satisfies (R𝜏), there exists a point 𝑣 ∈ 𝑋

such that the map

𝑎(𝑠) ≔ 1 + 𝜏(𝑠𝑣) (89)
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is continuous, strictly increasing, and unbounded as 𝑠 → ∞. For 𝜏0(𝑥) =
∑ℓ∈𝐿 log(1 + 𝑥ℓ), we also have, along the same ray,

𝑏(𝑠) ≔ 1 + 𝜏0(𝑠𝑣) = 1 +∑
ℓ∈𝐿

log(1 + 𝑠𝑣ℓ), (90)

which is continuous, strictly increasing, and unbounded since at least one
𝑣ℓ > 0.

Now, for any fixed 𝑡 ∈ [0, 1], define

𝐹𝑡(𝑠) ≔ 1 + 𝐻(𝜏, 𝑡)(𝑠𝑣),
= 𝑎(𝑠) 1−𝑡

𝑏(𝑠) 𝑡 .
(91)

Being a productof continuous functions, 𝐹𝑡(𝑠) is continuous in 𝑠. Moreover,
since both 𝑎(𝑠) and 𝑏(𝑠) are strictly increasing in 𝑠, and the map 𝑧 ↦ 𝑧

𝑐 is
strictly increasing for any 𝑐 > 0, it follows that 𝐹𝑡(𝑠) is strictly increasing
in 𝑠. Finally, since both 𝑎(𝑠) and 𝑏(𝑠) are unbounded as 𝑠 → ∞, it follows
that 𝐹𝑡(𝑠) is unbounded as 𝑠 → ∞. Thus, we conclude that 𝐻(𝜏, 𝑡)
satisfies (R𝜏).

2. Continuity (C𝜏). This is immediate because 𝐻 (𝜏, 𝑡) is a finite product of
continuous functions.

3. Weak Monotonicity (M̃𝜏). Define

𝜙(𝑥) ≔ (1 + 𝜏(𝑥))1−𝑡
, 𝜓(𝑥) ≔ (1 + 𝜏0(𝑥))𝑡 . (92)

Since both 𝜏 and 𝜏0 are weakly increasing and nonnegative, and the map
𝑧 ↦ (1 + 𝑧)𝑎 is strictly increasing for any 𝑎 > 0, it follows that 𝜙(𝑥) and
𝜓(𝑥) are eachweakly increasing in 𝑥. Moreover, since𝜏 is strictly increasing
in at least one coordinate at each point, and 𝜏0 is strictly increasing in all
coordinates, we conclude that the product𝜙(𝑥)×𝜓(𝑥) is strictly increasing
in at least one coordinate at each point.

4. Log-Concavity (L̃𝜏). We need to show that

log (1 + 𝐻 (𝜏, 𝑡) (𝑥)) = (1 − 𝑡) log (1 + 𝜏(𝑥))
+ 𝑡 log (1 + 𝜏0(𝑥))

(93)

is strictly concave in 𝑥. Since 𝜏 and 𝜏0 both possess L̃𝜏, this is a sum of two
concave functions, and thus it is concave in 𝑥.
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We conclude that 𝐻 (𝜏, 𝑡) ∈ T for all 𝜏 ∈ T and 𝑡 ∈ [0, 1].
Finally, as a matter of course, we confirm that 𝐻 is a strong deformation

retraction from T onto 𝜏0:

1. At 𝑡 = 0, we have

𝐻 (𝜏, 0) = (1 + 𝜏)1−0
× (1 + 𝜏0)0

− 1 = 𝜏, (94)

which shows that 𝐻 (𝜏, 0) = 𝜏 for all 𝜏 ∈ T , as required.

2. At 𝑡 = 1, we have

𝐻 (𝜏, 1) = (1 + 𝜏)1−1
× (1 + 𝜏0)1

− 1 = 𝜏0 , (95)

which shows that 𝐻 (𝜏, 1) = 𝜏0 for all 𝜏 ∈ T , as required.

3. For all 𝑡 ∈ [0, 1], we have

𝐻 (𝜏0 , 𝑡) = (1 + 𝜏0)1−𝑡
× (1 + 𝜏0)𝑡 − 1 = (1 + 𝜏0) − 1 = 𝜏0 , (96)

which shows that 𝐻 (𝜏0 , 𝑡) = 𝜏0 for all 𝑡 ∈ [0, 1], as required.

We conclude that 𝐻 is a strong deformation retraction from T onto 𝜏0, and thus
T is contractible with respect to the compact-open topology.

Homotopy for K. We define the target function

𝜅0 (𝑥) = ∑
ℓ∈𝐿

𝑥ℓ . (97)

Though this one is a bit more straightforward, let us confirm that 𝜅0 ∈ K:

1. Continuity (C𝜅). This is immediate because 𝜅0 is a finite sum of continuous
functions.

2. Centeredness (0𝜅). Evidently, 𝜅0(0) = 0.

3. Coerciveness (O𝜅). The coordinatewise limit of 𝜅0(𝑥) is ∞; a fortiori, the
norm limit is ∞.

4. Strict Monotonicity (M𝜅). Again, this is immediate because 𝜅0 is a finite
sum of strictly increasing functions.
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5. Strict Exp-Convexity (L𝜅). We need to show that the map

𝑥 ⟼ exp(∑
ℓ∈𝐿

𝑥ℓ)

is strictly convex. 𝜅0 is linear, and the exponential function is strictly convex
and increasing, so their composition is strictly convex.

So, we can move on to defining the homotopy, which we set as

𝐻 ∶ K × [0, 1] ⟶ K,
(𝜅, 𝑡) ⟼ log ((1 − 𝑡) exp𝜅 + 𝑡 exp𝜅0) .

We need to show that 𝐻 is continuous in (𝜅, 𝑡). Since K is metrized by 𝑑𝜅, it
suffices to show that for any 𝜖 > 0, there exists a neighborhood of (𝜅, 𝑡) such
that for all (𝜅′

, 𝑡
′) sufficiently close to (𝜅, 𝑡), we have 𝑑 (𝐻 (𝜅′

, 𝑡
′) , 𝐻(𝜅, 𝑡)) < 𝜖.

Fix any 𝑛 ∈ N. Over the compact set [0, 𝑛]𝐿, the map

(𝑥;𝜅, 𝑡) ↦ 𝐻(𝜅, 𝑡)(𝑥) = log ((1 − 𝑡) exp𝜅(𝑥) + 𝑡 exp𝜅0(𝑥)) (98)

is jointly continuous in (𝜅, 𝑡), since (𝜅, 𝑥) ↦ 𝜅(𝑥) is continuous under 𝑑, and
the arithmetic operations are smooth. Therefore, 𝑑𝜅 (𝐻(𝜅, 𝑡), 𝐻 (𝜅′

, 𝑡
′)) is small

for small perturbations in (𝜅, 𝑡), and 𝐻 is continuous in 𝑑.
We also need to show that 𝐻 (𝜅, 𝑡) ∈ K for all 𝜅 ∈ K and 𝑡 ∈ [0, 1]. Choose

and fix any such 𝜅 ∈ K and 𝑡 ∈ [0, 1].
1. Continuity (C𝜅). This is immediate because 𝐻 (𝜅, 𝑡) is a composition of

continuous functions.

2. Centeredness (0𝜅). The weighted average inside the logarithm evaluates
to 1 at 𝑥 = 0, so 𝐻 (𝜅, 𝑡) (0) = log(1) = 0.

3. Coerciveness (O𝜅). As ∥𝑥∥ → ∞, at least one of 𝜅(𝑥) or 𝜅0(𝑥) goes
to ∞, so the weighted average inside the logarithm goes to ∞, and thus
𝐻 (𝜅, 𝑡) (𝑥) goes to ∞.

4. Strict Monotonicity (M𝜅). Since both 𝜅 and 𝜅0 are strictly increasing, and
the map 𝑧 ↦ log(𝑧) is strictly increasing for 𝑧 > 0, it follows that 𝐻 (𝜅, 𝑡)
is strictly increasing.

5. Strict Exp-Convexity (L𝜅). We need to show that the map

𝑥 ⟼ exp (𝐻 (𝜅, 𝑡) (𝑥)) = (1 − 𝑡) exp𝜅(𝑥) + 𝑡 exp𝜅0(𝑥) (99)

is strictly convex. Since𝜅 and𝜅0 both possessL𝜅, this is a positive weighted
sum of two strictly convex functions, and thus it is strictly convex in 𝑥.
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We conclude that 𝐻 (𝜅, 𝑡) ∈ K for all 𝜅 ∈ K and 𝑡 ∈ [0, 1].
Finally, as a matter of course, we confirm that 𝐻 is a strong deformation

retraction from K onto 𝜅0:

1. At 𝑡 = 0, we have

𝐻 (𝜅, 0) = log ((1 − 0) exp𝜅 + 0 exp𝜅0) = 𝜅, (100)

which shows that 𝐻 (𝜅, 0) = 𝜅 for all 𝜅 ∈ K, as required.

2. At 𝑡 = 1, we have

𝐻 (𝜅, 1) = log ((1 − 1) exp𝜅 + 1 exp𝜅0) = 𝜅0 , (101)

which shows that 𝐻 (𝜅, 1) = 𝜅0 for all 𝜅 ∈ K, as required.

3. For all 𝑡 ∈ [0, 1], we have

𝐻 (𝜅0 , 𝑡) = log ((1 − 𝑡) exp𝜅0 + 𝑡 exp𝜅0) = log (exp𝜅0) = 𝜅0 ,

(102)

which shows that 𝐻 (𝜅0 , 𝑡) = 𝜅0 for all 𝑡 ∈ [0, 1], as required.

We conclude that 𝐻 (𝜅, 𝑡) ∈ K for all 𝜅 ∈ K and 𝑡 ∈ [0, 1].
Thus, 𝐻 is a strong deformation retraction from K onto 𝜅0, and thus K is

contractible with respect to the compact-open topology. [Back to the text.]

Next we prove three important structural properties of policies.

11 Lemma
The policy function 𝜋𝜏,𝜅 ∶ 𝑀 → 𝑋 satisfies:

1. Centeredness (0𝜋): we have

𝜋𝜏,𝜅(0) = 0;

2. Coerciveness (O𝜋): we have

lim
𝑚→∞

∥𝜋𝜏,𝜅(𝑚)∥ = ∞; and

3. Weak Monotonicity (M̃𝜋): we have

𝑚1 ⩽ 𝑚2 ⟹ 𝜋𝜏,𝜅(𝑚1) ⩽ 𝜋𝜏,𝜅(𝑚2),

where the inequality on the right-hand side is taken component-wise. [Proof .]

Proof. We address each claim in turn.
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Coerciveness. Fix any norm ∥⋅∥ on R𝐿 and suppose, for sake of contradic-
tion, that there exists some sequence {𝑚𝑛}𝑛∈N such that 𝑚𝑛 → ∞ but that
∥𝜋𝜏,𝜅(𝑚𝑛)∥ ⩽ 𝑅𝐿 ≔ (𝑅, . . . , 𝑅) with 0 < 𝑅 < ∞. The box [0, 𝑅]𝐿 ⊊ R𝐿

+

is evidently a compact subset of R𝐿
+. Since 𝜏 is continuous, the restriction 𝜏∣𝐵

attains its maximum value 𝑚𝑅 < ∞. Hence, for all 𝑛 ∈ N, we have

𝑚𝑛 ⩽ 𝜏 (𝜋𝜏,𝜅(𝑚𝑛)) ⩽ 𝑚𝑅 , (103)

contradicting 𝑚𝑛 → ∞. We conclude that ∥𝜋𝜏,𝜅(𝑚)∥ → ∞ whenever 𝑚 → ∞.

Weak monotonicity. Choose and fix (𝜏, 𝜅) ∈ T ×K and define, for each𝑚 ⩾ 0,

𝐹(𝑚) ≔ {𝑥 ∈ R𝐿
+ ∶ 𝜏(𝑥) ⩾ 𝑚} ,

= {𝑥 ∈ R𝐿
+ ∶ log(1 + 𝜏(𝑥)) ⩾ log(1 + 𝑚)} .

We will use the notation 𝐺 = log(1 + 𝜏) for the remainder of this proof.
A few remarks on 𝐹 are in order:

1. 𝐹 is nonempty, because 𝜏 possesses R𝜏;

2. 𝐹 is convex, because 𝜏 possesses Q̃𝜏;

3. 𝐹 is closed, because it is the superlevel set of the continuous function 𝐺;

4. 𝐹 has the upper set property that

(𝑥 ∈ 𝐹(𝑚) and 𝑦 ⩾ 𝑥) ⟹ 𝑦 ∈ 𝐹(𝑚), (104)

where this is also due to M̃𝜏; and

5. 𝐹 has the antitone property that

𝑚1 < 𝑚2 ⟹ 𝐹(𝑚1) ⊃ 𝐹(𝑚2), (105)

where again this follows from M̃𝜏.

From here, we proceed in three steps:

1. For any 𝑚 ∈ 𝑀, there exists a unique minimal element of 𝐹(𝑚). Choose and
fix any 𝑚 ∈ 𝑀; since 𝐹(𝑚) is nonempty, we may also choose and fix some
𝑥

0
∈ 𝐹(𝑚). Consider the order interval

[0, 𝑥0] ≔ {𝑥 ∈ R𝐿
+ ∶ 0 ⩽ 𝑥 ⩽ 𝑥

0} . (106)
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This set is compact, so the intersection 𝐹(𝑚) ∩ [0, 𝑥0] is also compact
(being the intersection of a closed set and a compact set). Finally, we know
the intersection is nonempty, as it contains 𝑥0. Define the linear functional

𝐿(𝑥) ≔ 1⊤𝑥. (107)

By the Weierstrass Theorem, 𝐿 attains a minimum over 𝐹(𝑚) ∩ [0, 𝑥0].
Let 𝑢(𝑚) denote any such minimizer. For uniqueness, suppose for sake
of contradiction that there exist 𝑥1 , 𝑥2 ∈ 𝐹(𝑚) with 𝑥1 ≠ 𝑥2 with both
minimal. Since 𝐺 is strictly concave, we have

𝐺 ((1 − 𝜆)𝑥1 + 𝜆𝑥2) > (1 − 𝜆)𝐺(𝑥1) + 𝜆𝐺(𝑥2) ⩾ log(1 + 𝑚),
(108)

where the second part is because 𝑥1 , 𝑥2 ∈ 𝐹(𝑚). We therefore have

𝑧 ≔ (1 − 𝜆)𝑥1 + 𝜆𝑥2 ∈ int 𝐹(𝑚).

Then there exists some 𝜀 > 0 small enough that we may define

𝑤 ≔ 𝑧 − 𝜀1, (109)

such that 𝑤 ∈ 𝐹(𝑚) and 𝑤 ⩽ min{𝑥1 , 𝑥2}. Contradiction; we conclude
that the minimizer is unique.

2. The optimizer equals the minimal element. Recall that𝜋𝜏,𝜅(𝑚) is defined as the
unique minimizer of 𝜅 over the feasible set 𝐹(𝑚). Since 𝜅 possesses M𝜅,
it increases strictly in every coordinate. Hence, for any upper set𝑈 ⊆ R𝐿

+

with minimal element 𝑢, we have

𝜅(𝑥) > 𝜅(𝑢) ∀𝑥 ∈ 𝑈 \ {𝑢}. (110)

Because 𝐹(𝑚) is an upper set with unique minimal element 𝑢(𝑚), this
property implies

𝜋𝜏,𝜅(𝑚) = argmin
𝑥∈𝐹(𝑚)

𝜅(𝑥) = 𝑢(𝑚). (111)

Thus, the optimizer of 𝜅 over 𝐹(𝑚) coincides with its minimal element.

3. Monotonicity. Let 𝑚1 < 𝑚2. By the antitone property of 𝐹, we have

𝐹(𝑚2) ⊂ 𝐹(𝑚1). (112)
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Since 𝑢(𝑚1) is the unique minimal element of 𝐹(𝑚1) and 𝑢(𝑚2) ∈

𝐹(𝑚2) ⊂ 𝐹(𝑚1), it follows that

𝑢(𝑚1) ⩽ 𝑢(𝑚2), (113)

where the inequality is understood coordinatewise. Therefore,

𝜋𝜏,𝜅(𝑚1) = 𝑢(𝑚1) ⩽ 𝑢(𝑚2) = 𝜋𝜏,𝜅(𝑚2), (114)

establishing that 𝜋𝜏,𝜅 is coordinatewise nondecreasing in 𝑚.

We have thus established both claims. [Back to the text.]

Finally, we may prove the main result of Section 2.

13 Proposition
PT ×K strongly deformation retracts onto the point

𝜋0(𝑚) = (exp (𝑚
𝐿
) − 1) 1,

where 1 ∈ R𝐿 is the vector of ones. [Proof .]

Proof. We proceed in two steps. First, we give the intuitive argument that
motivates the construction. Second, we use this fact to construct a canonical
lift from the policy space P to the parameter space T × K, which allows us to
complete the homotopy.

Step 1: Intuition. By Lemma 12, there exist strong deformation retractions

𝐻𝜅 ∶ K × [0, 1] ⟶ K,
(𝜅, 𝑡) ⟼ 𝐻𝜅(𝜅, 𝑡),

𝐻𝜏 ∶ T × [0, 1] ⟶ T ,
(𝜏, 𝑡) ⟼ 𝐻𝜏(𝜏, 𝑡),

(115)

onto the functions

𝜅0(𝑥) = ∑
ℓ∈𝐿

𝑥ℓ , and 𝜏0(𝑥) = ∑
ℓ∈𝐿

log(1 + 𝑥ℓ). (116)
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For any (𝜏, 𝜅) ∈ T ×K, define the path (𝜏𝑡 , 𝜅𝑡) ≔ (𝐻𝜏(𝜏, 𝑡), 𝐻𝜅(𝜅, 𝑡)), and let
𝜋𝑡 ≔ 𝜋𝜏𝑡 ,𝜅𝑡 denote the corresponding curried solutions of

min
𝑥⩾0

𝜅𝑡(𝑥) s.t. 𝜏𝑡(𝑥) ⩾ 𝑚. (117)

Per Lemma 52, the solution map 𝑆 ∶ (𝜏, 𝜅) ↦ 𝜋𝜏,𝜅 is continuous. Thus, 𝑡 ↦ 𝜋𝑡
is a continuous path in the policy space P from 𝜋0 = 𝜋𝜏,𝜅 to 𝜋1 = 𝜋𝜏0 ,𝜅0 . This
establishes path connectedness ofP . However, since distinct parameter pairs may
generate the same policy, this path can depend on the choice of representative.
To obtain a homotopy on P itself, we must identify a continuous choice of (𝜏, 𝜅)
for each policy 𝜋. This is the content of Step 2.

Step 2: Canonical lift. We seek a continuous choice of (𝜏𝜋 , 𝜅𝜋) for each policy
𝜋 ∈ P . The harder step will be on 𝜏𝜋; once 𝜏𝜋 is defined, we can choose an
appropriate 𝜅𝜋 that is constant in 𝜋 and satisfies the necessary properties.

Our strategy is to define 𝜏𝜋 so that its hypograph is the set of all feasible
(𝑥, 𝑚) pairs for the policy 𝜋. Then, we will verify that 𝜏𝜋 possesses all the
required properties to be in T . Finally, we will show that 𝜏𝜋 varies continuously
in 𝜋 under the compact-open topology.

Given a policy 𝜋 ∈ P , we define the function

𝜏𝜋(𝑥) ≔ sup {𝑚 ∈ 𝑀 ∶ 𝜋(𝑚) ⩽ 𝑥} .

We now verify that 𝜏𝜋 ∈ T :

1. Continuity (C𝜏): Fix 𝜋 ∈ P and 𝑥
0
∈ 𝑋 . Write 𝜏 = 𝜏𝜋 and set 𝑚0

=

𝜏(𝑥0) = max{𝑚 ∈ 𝑀 ∶ 𝜋(𝑚) ⩽ 𝑥
0}.

Upper semicontinuity at 𝑥0. Pick any 𝑚+
∈ 𝑀 with 𝑚+

> 𝑚
0. Since 𝑚0 is

maximal, 𝜋(𝑚+) ⩽̸ 𝑥
0, so there exists an index 𝑗 with 𝜋 𝑗(𝑚+) > 𝑥

0
𝑗 . Let

𝛿1 =
1
2(𝜋 𝑗(𝑚

+) − 𝑥
0
𝑗 ) > 0. If ∥𝑥 − 𝑥

0∥ < 𝛿1 then 𝑥 𝑗 < 𝜋 𝑗(𝑚+), hence
𝜋(𝑚+) ⩽̸ 𝑥 and therefore 𝜏(𝑥) < 𝑚

+. Since 𝑚+
> 𝑚

0 was arbitrary, this
implies lim sup𝑥→𝑥0 𝜏(𝑥) ⩽ 𝑚0.

Concavity of 𝑔 = log(1 + 𝜏). For each 𝑚 ∈ 𝑀, the set {𝑥 ∶ 𝜏(𝑥) ⩾ 𝑚} =

{𝑥 ∶ 𝜋(𝑚) ⩽ 𝑥} = 𝜋(𝑚) + R𝐿
+ is convex. Thus all superlevel sets of 𝑔 are

convex, so 𝑔 is concave.

Continuity on the interior. 𝑔 is finite and concave on the convex set 𝑋◦
=

(0,∞)𝐿, hence 𝑔 is continuous on 𝑋◦. Because 𝑡 ↦ 𝑒
𝑡 − 1 is continuous

and strictly increasing, 𝜏 is continuous on 𝑋◦.
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Lower semicontinuity at 𝑥0. If 𝑥0
∈ 𝑋

◦, then 𝜏 is continuous at 𝑥0 by the
previous step, so lim inf𝑥→𝑥0 𝜏(𝑥) ⩾ 𝜏(𝑥0) = 𝑚0.

If 𝑥0 lies on the boundary of 𝑋 , define 𝑥𝑘 = 𝑥
0 + 𝑘

−11 ∈ 𝑋
◦ and 𝑦

𝑘
=

(𝑥0 − 𝑘
−11)+ ∈ 𝑋 for 𝑘 ∈ N. Then 𝑦𝑘 ⩽ 𝑥

0
⩽ 𝑥

𝑘 , 𝑥𝑘 ↓ 𝑥0, 𝑦𝑘 ↑ 𝑥0, and
by monotonicity of 𝜏, 𝜏(𝑦𝑘) ⩽ 𝜏(𝑥) ⩽ 𝜏(𝑥𝑘) whenever 𝑦𝑘 ⩽ 𝑥 ⩽ 𝑥

𝑘 . By
continuity of 𝜏 on 𝑋◦ and upper semicontinuity at 𝑥0, we have 𝜏(𝑥𝑘) ↓ 𝑚0

and𝜏(𝑦𝑘) ↑ 𝑚0. Hence, for any 𝜖 > 0, there exists 𝑘𝜖 such that forall 𝑘 ⩾ 𝑘𝜖

and all 𝑥 with 𝑦𝑘 ⩽ 𝑥 ⩽ 𝑥
𝑘 , 𝑚0 − 𝜖 ⩽ 𝜏(𝑦𝑘) ⩽ 𝜏(𝑥) ⩽ 𝜏(𝑥𝑘) ⩽ 𝑚

0 + 𝜖.
This yields lim inf𝑥→𝑥0 𝜏(𝑥) ⩾ 𝑚0.

Combining uppersemicontinuity and lowersemicontinuity, 𝜏 is continuous
at 𝑥0. Since 𝑥0 was arbitrary, 𝜏𝜋 is continuous on 𝑋 .

2. Ray-Surjectivity (R𝜏). We must show that there exists a point 𝑣 ∈ 𝑋 such
that the map

𝑠 ⟼ 𝜏𝜋 (𝑠𝑣) ∶ R⩾0 ⟶ 𝑀 (118)

is continuous, strictly increasing, and unbounded.

Fix 𝜋 ∈ P and define, for any 𝑣 ≫ 0 and 𝑠 ⩾ 0,

𝑠𝑚(𝑣) ≔ max
ℓ∈𝐿

𝜋ℓ(𝑚)
𝑣ℓ

. (119)

By definition of 𝜏𝜋, we have

𝜏𝜋(𝑠𝑣) = sup{𝑚 ∈ 𝑀 ∶ 𝜋(𝑚) ⩽ 𝑠𝑣 },
= sup{𝑚 ∈ 𝑀 ∶ 𝑠 ⩾ 𝑠𝑚(𝑣) }.

(120)

Hence the map 𝑠 ↦ 𝜏𝜋(𝑠𝑣) is the (right-continuous) generalized inverse
of 𝑚 ↦ 𝑠𝑚(𝑣).
Unboundedness. Since 𝜋 is weakly increasing in 𝑚, 𝜋(𝑚) → ∞ compo-
nentwise as 𝑚 → ∞. For every fixed 𝑚 ∈ 𝑀, we can choose 𝑠 ⩾ 𝑠𝑚(𝑣)
so that 𝑠𝑣 ⩾ 𝜋(𝑚), which implies 𝜏𝜋(𝑠𝑣) ⩾ 𝑚. Letting 𝑚 → ∞ yields
𝜏𝜋(𝑠𝑣) → ∞ as 𝑠 → ∞.

Monotonicity. For 𝑠2 > 𝑠1, we have

{𝑚 ∶ 𝑠1 ⩾ 𝑠𝑚(𝑣) } ⊆ {𝑚 ∶ 𝑠2 ⩾ 𝑠𝑚(𝑣) }, (121)

so 𝜏𝜋(𝑠2𝑣) ⩾ 𝜏𝜋(𝑠1𝑣). Thus 𝑠 ↦ 𝜏𝜋(𝑠𝑣) is weakly increasing.
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Strict increase for generic rays. Fix rational 𝑚1 < 𝑚2 and define

𝐸𝑚1 ,𝑚2 ≔ { 𝑣 ≫ 0 ∶ 𝑠𝑚2(𝑣) = 𝑠𝑚1(𝑣) }. (122)

If 𝜋(𝑚2) = 𝜋(𝑚1), the set 𝐸𝑚1 ,𝑚2 is empty. Otherwise, equality requires

max
ℓ

𝜋ℓ(𝑚2)
𝑣ℓ

= max
𝑘

𝜋𝑘(𝑚1)
𝑣𝑘

, (123)

which defines a finite union of smooth hypersurfaces of codimension one
in the positive cone {𝑣 ≫ 0}. Each 𝐸𝑚1 ,𝑚2 is therefore closed and nowhere
dense. Define the residual set

V ≔ { 𝑣 ≫ 0 ∶ 𝑠𝑚2(𝑣) > 𝑠𝑚1(𝑣) for all rationals 𝑚1 < 𝑚2 }. (124)

For any 𝑣 ∈ V , the map𝑚 ↦ 𝑠𝑚(𝑣) is strictly increasing on R+, and hence
its inverse 𝑠 ↦ 𝜏𝜋(𝑠𝑣) is strictly increasing.

Continuity. From (C𝜏), 𝜏𝜋 is continuous on 𝑋 . Thus 𝑠 ↦ 𝜏𝜋(𝑠𝑣) is
continuous for each 𝑣.

Combining these properties, we find that for any generic 𝑣 ∈ V , the map
𝑠 ↦ 𝜏𝜋(𝑠𝑣) is continuous, strictly increasing, and unbounded. Hence 𝜏𝜋
satisfies (R𝜏).

3. Weak Monotonicity (M̃𝜏): Fix 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⩽ 𝑦 coordinatewise. By
definition, 𝜏𝜋(𝑥) = sup{𝑚 ∈ 𝑀 ∶ 𝜋(𝑚) ⩽ 𝑥} and 𝜏𝜋(𝑦) = sup{𝑚 ∈ 𝑀 ∶
𝜋(𝑚) ⩽ 𝑦}. Since 𝑥 ⩽ 𝑦, we have {𝑚 ∶ 𝜋(𝑚) ⩽ 𝑥} ⊆ {𝑚 ∶ 𝜋(𝑚) ⩽ 𝑦},
hence 𝜏𝜋(𝑥) ⩽ 𝜏𝜋(𝑦). Therefore 𝜏𝜋 is weakly increasing in each coordinate.

4. Log-Concavity (L̃𝜏): Let 𝑔(𝑥) = log(1 + 𝜏𝜋(𝑥)) = log (1 + sup{𝑚 ∈

𝑀 ∶ 𝜋(𝑚) ⩽ 𝑥}). To show 𝑔 is concave, it suffices to verify that for all
𝑚1 , 𝑚2 ∈ 𝑀 and 𝜆 ∈ (0, 1),

𝜆𝑈𝜋(𝑚1) + (1 − 𝜆)𝑈𝜋(𝑚2) ⊆ 𝑈𝜋(𝑚𝜆), (125)

where𝑈𝜋(𝑚) = {𝑥 ∶ 𝜏𝜋(𝑥) ⩾ 𝑚} = {𝑥 ∶ 𝑥 ⩾ 𝜋(𝑚)} and 𝑚𝜆 satisfies

log(1 + 𝑚𝜆) = 𝜆 log(1 + 𝑚1) + (1 − 𝜆) log(1 + 𝑚2), (126)

that is,

𝑚𝜆 = (1 + 𝑚1)𝜆(1 + 𝑚2)1−𝜆
− 1. (127)
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We compute

𝜆𝑈𝜋(𝑚1) + (1 − 𝜆)𝑈𝜋(𝑚2) = 𝜆𝜋(𝑚1) + (1 − 𝜆)𝜋(𝑚2) + R𝐿
+.

(128)

Hence the desired inclusion is equivalent to

𝜆𝜋(𝑚1) + (1 − 𝜆)𝜋(𝑚2) ⩾ 𝜋(𝑚𝜆) (coordinatewise). (129)

Since 𝜋 ∈ P , there exist 𝜏 ∈ T and 𝜅 ∈ K such that 𝜋 = 𝜋𝜏,𝜅, with
log(1 + 𝜏) concave and 𝜅 strictly increasing. Let 𝑥𝑖 = 𝜋(𝑚𝑖) for 𝑖 = 1, 2.
Concavity of log(1 + 𝜏) gives

log (1 + 𝜏(𝜆𝑥1 + (1 − 𝜆)𝑥2)) ⩾ 𝜆 log(1 + 𝜏(𝑥1))
+ (1 − 𝜆) log(1 + 𝜏(𝑥2))

= 𝜆 log(1 + 𝑚1)
+ (1 − 𝜆) log(1 + 𝑚2),

(130)

so 𝜏(𝜆𝑥1 + (1 − 𝜆)𝑥2) ⩾ 𝑚𝜆. Thus 𝜆𝑥1 + (1 − 𝜆)𝑥2 is feasible at level 𝑚𝜆.

Because 𝜅 is strictly increasing and 𝜋(𝑚𝜆) is the unique 𝜅-minimizer
among points 𝑥 with 𝜏(𝑥) ⩾ 𝑚𝜆, we obtain

𝜋(𝑚𝜆) ⩽ 𝜆𝑥1 + (1 − 𝜆)𝑥2 = 𝜆𝜋(𝑚1) + (1 − 𝜆)𝜋(𝑚2), (131)

where the inequality is coordinatewise. This proves the inclusion above,
and hence 𝑥 ↦ log(1 + 𝜏𝜋(𝑥)) is concave.

We therefore have 𝜏𝜋 ∈ T for all 𝜋 ∈ P .
Now we verify that the map 𝜋 ↦ 𝜏𝜋 is continuous from P to T under the

compact-open topologies. Fix any 𝜋0 ∈ P and let 𝜏0 = 𝜏𝜋0 . Let 𝐾 ⊆ 𝑋 be
compact and 𝜖 > 0. We must find 𝛿 > 0 such that 𝑑P(𝜋,𝜋0) < 𝛿 implies

max
𝑥∈𝐾

∣𝜏𝜋(𝑥) − 𝜏0(𝑥)∣ < 𝜖. (132)

Set 𝑚𝐾 = max𝑥∈𝐾 𝜏0(𝑥) and choose 𝑚𝐾 ∈ 𝑀 with 𝑚𝐾 > 𝑚𝐾 + 1. For
(𝑚, 𝑥) ∈ [0, 𝑚𝐾] × 𝐾 define

𝑓 (𝑚, 𝑥) = min
1⩽𝑖⩽𝐿

(𝑥𝑖 − 𝜋0,𝑖(𝑚)). (133)

Note that 𝑓 is continuous, nonincreasing in 𝑚 for each fixed 𝑥, and

𝜏0(𝑥) = sup{𝑚 ∈ [0, 𝑚𝐾] ∶ 𝑓 (𝑚, 𝑥) ⩾ 0}. (134)
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Let 𝜋 ∈ P and define 𝑓𝜋(𝑚, 𝑥) = min𝑖 (𝑥𝑖 − 𝜋𝑖(𝑚)). Note that if

sup
𝑚∈[0,𝑚𝐾]

∥𝜋(𝑚) − 𝜋0(𝑚)∥ < 𝜂, (135)

then

sup
(𝑚,𝑥)∈[0,𝑚𝐾]×𝐾

∣ 𝑓𝜋(𝑚, 𝑥) − 𝑓 (𝑚, 𝑥)∣ ⩽ 𝜂. (136)

Upper bound. For each 𝑥 ∈ 𝐾 set 𝑚+(𝑥) = 𝜏0(𝑥) + 𝜖. Then 𝑓 (𝑚+(𝑥), 𝑥) < 0
because 𝑚+(𝑥) > 𝜏0(𝑥). By continuity of 𝑓 there exist 𝜂𝑥 > 0 and an open
neighborhood𝑉𝑥 ⊂ 𝐾 such that

𝑓 (𝑚+(𝑥), 𝑥′) ⩽ −2𝜂𝑥 for all 𝑥′ ∈ 𝑉𝑥 . (137)

If 𝜂 ⩽ 𝜂𝑥 , then for all 𝑥′ ∈ 𝑉𝑥 ,

𝑓𝜋(𝑚+(𝑥), 𝑥′) ⩽ −𝜂𝑥 < 0, (138)

hence 𝜏𝜋(𝑥′) < 𝑚+(𝑥) = 𝜏0(𝑥) + 𝜖.
Lower bound. For each 𝑥 ∈ 𝐾 either 𝑓 (𝜏0(𝑥), 𝑥) > 0, in which case set

𝑚
−(𝑥) = 𝜏0(𝑥), or 𝑓 (𝜏0(𝑥), 𝑥) = 0, in which case by continuity in 𝑚 choose

𝑚
−(𝑥) ∈ [0, 𝜏0(𝑥)) with

𝑓 (𝑚−(𝑥), 𝑥) ⩾ 2𝜂′𝑥 (139)

for some 𝜂′𝑥 > 0. By continuity in 𝑥, shrinking if necessary, there is an open
neighborhood𝑊𝑥 ⊂ 𝐾 of 𝑥 such that

𝑓 (𝑚−(𝑥), 𝑥′) ⩾ 2𝜂′𝑥 for all 𝑥′ ∈𝑊𝑥 . (140)

If 𝜂 ⩽ 𝜂′𝑥 , then for all 𝑥′ ∈𝑊𝑥 ,

𝑓𝜋(𝑚−(𝑥), 𝑥′) ⩾ 𝜂
′
𝑥 > 0, (141)

so 𝜏𝜋(𝑥′) ⩾ 𝑚−(𝑥) ⩾ 𝜏0(𝑥) − 𝜖.
By compactness of 𝐾, select 𝑥1

, . . . , 𝑥
𝑝
∈ 𝐾 so that𝑈ℓ ∶= 𝑉𝑥ℓ ∩𝑊𝑥ℓ cover 𝐾.

Set

𝜂 = min
1⩽ℓ⩽𝑝

{𝜂𝑥ℓ , 𝜂
′
𝑥ℓ } > 0. (142)
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Choose 𝛿 > 0 so that 𝑑P(𝜋,𝜋0) < 𝛿 implies

sup
𝑚∈[0,𝑚𝐾]

∥𝜋(𝑚) − 𝜋0(𝑚)∥ < 𝜂. (143)

Then for any 𝑥 ∈ 𝐾 there exists ℓ with 𝑥 ∈ 𝑈ℓ , and we have

𝜏0(𝑥ℓ) − 𝜖 ⩽ 𝜏𝜋(𝑥) ⩽ 𝜏0(𝑥ℓ) + 𝜖. (144)

Finally, continuity of 𝜏0 on 𝐾 allows us (shrinking𝑈ℓ if needed) to ensure

∣𝜏0(𝑥) − 𝜏0(𝑥ℓ)∣ < 𝜖 whenever 𝑥 ∈ 𝑈ℓ , (145)

so that for all 𝑥 ∈ 𝐾,

∣𝜏𝜋(𝑥) − 𝜏0(𝑥)∣ ⩽ ∣𝜏𝜋(𝑥) − 𝜏0(𝑥ℓ)∣ + ∣𝜏0(𝑥ℓ) − 𝜏0(𝑥)∣ < 2𝜖. (146)

As 𝜖 > 0 was arbitrary, the claim follows. We therefore have shown that the map
𝜋 ↦ 𝜏𝜋 is continuous from P to T . To complete the lift, we need to choose 𝜅𝜋

for each 𝜋.

Defining 𝜅𝜋. Fix 𝛼 ∈ R𝐿
++ and 𝜀 > 0 and define

𝜅𝜋(𝑥) = 𝛼 ⋅ 𝑥 + 𝜀∥𝑥∥2
, 𝑥 ∈ 𝑋. (147)

𝜅𝜋 ∈ K: Continuity and 𝜅𝜋(0) = 0 are immediate. Coerciveness holds
since ∥𝑥∥ → ∞ implies 𝜅𝜋(𝑥) → ∞. Strict coordinatewise monotonicity holds
because 𝛼𝑖 > 0 for all 𝑖 and the quadratic term is nondecreasing in each coordinate
when others are fixed. Strict convexity of 𝜅𝜋 is standard, hence 𝑥 ↦ exp(𝜅𝜋(𝑥))
is strictly convex.

Compatibility with 𝜏𝜋: For any 𝑚 ∈ 𝑀, the feasible set for level 𝑚 is

{𝑥 ∈ 𝑋 ∶ 𝜏𝜋(𝑥) ⩾ 𝑚} = {𝑥 ∈ 𝑋 ∶ 𝑥 ⩾ 𝜋(𝑚)} = 𝜋(𝑚) + R𝐿
+. (148)

On such an upper set, any strictly increasing function in each coordinate achieves
its unique minimum at the minimal element. Therefore,

argmin{𝜅𝜋(𝑥) ∶ 𝜏𝜋(𝑥) ⩾ 𝑚} = {𝜋(𝑚)}. (149)

Hence, with this choice of 𝜅𝜋 (which does not depend on 𝜋), we have 𝜋 = 𝜋𝜏𝜋 ,𝜅𝜋

for every 𝜋 ∈ P .
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Completing the homotopy. We may now complete the homotopy on P . For
any 𝜋 ∈ P , define the path (𝜏𝑡 , 𝜅𝑡) = (𝐻𝜏(𝜏𝜋 , 𝑡), 𝐻𝜅(𝜅𝜋 , 𝑡)) for 𝑡 ∈ [0, 1]. Let
𝜋𝑡 = 𝜋𝜏𝑡 ,𝜅𝑡 denote the corresponding curried solutions. By continuity of the
solution map 𝑆 ∶ (𝜏, 𝜅) ↦ 𝜋𝜏,𝜅, the map 𝑡 ↦ 𝜋𝑡 is a continuous path in P from
𝜋0 = 𝜋𝜏𝜋 ,𝜅𝜋

= 𝜋 to 𝜋1 = 𝜋𝜏0 ,𝜅0 . Since this construction works for any 𝜋 ∈ P , we
have established a homotopy from the identity map on P to the constant map
with value 𝜋𝜏0 ,𝜅0 . This shows that P is contractible.

Identifying the basepoint. In the name of completeness, let us identify 𝜋𝜏0 ,𝜅0 .
Recall that 𝜏0 and 𝜅0 are defined as

𝜏0 (𝑥) = ∑
ℓ∈𝐿

log (1 + 𝑥ℓ) ,

𝜅0 (𝑥) = ∑
ℓ∈𝐿

𝑥ℓ .
(150)

The solution to Problem (SPP (𝑚, 𝜏, 𝜅)) is characterized by the first-order con-
dition

1 −
𝜆

1 + 𝑥ℓ
= 0 for all ℓ ∈ 𝐿, 𝑚 −∑

ℓ∈𝐿

log (1 + 𝑥ℓ) = 0, (151)

where 𝜆 is the Lagrange multiplier associated with the production constraint.
Clearly, the first condition implies that 𝑥ℓ = 𝑥

∗
= 𝜆 − 1 for all ℓ ∈ 𝐿. Plugging

this into the second condition, we have

𝑚 − 𝐿 log (1 + 𝑥
∗) = 0, (152)

which implies that

𝑥
∗
= exp (𝑚

𝐿
) − 1. (153)

Thus, the curried solution function 𝜋𝜏0 ,𝜅0 is given by

𝜋𝜏0 ,𝜅0(𝑚) = (exp (𝑚
𝐿
) − 1) 1. (154)

We conclude that for any (𝜏, 𝜅) ∈ T ×K, there exists a homotopy from 𝜋𝜏,𝜅 to
the function 𝜋𝜏0 ,𝜅0 defined above. [Back to the text.]
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A.5 For Section 3

First, we handle the existence proof for Nash equilibrium in the disaggregated
game.

24 Proposition
Game 23 has at least one pure-strategy Nash equilibrium. [Proof .]

Proof. The main sticking point here is the discontinuity of the contest success
function when both States choose zero investment; this precludes us from appeal-
ing to standard existence results that require continuity of the payoff functions.
We will appeal to a well-known result due to Reny (1999), which states that a
game has a pure-strategy Nash equilibrium if:

1. each strategy set 𝑋𝑖 is a nonempty, compact, and convex subset of a topo-
logical vector space;

2. each payoff function is bounded and quasiconcave in its owner’s inputs;
and

3. the game satisfies a condition called better-reply secureness, to be defined at
the relevant part of the proof.

We address each condition in turn.

Strategy sets. Since each 𝜅𝑖 is coercive (O𝜅𝑖), each State’s cost goes to infinity
as the norm of their investment vector goes to infinity. So, there exists some
compact box

𝑋 = ∏
ℓ∈𝐿

[0, 𝑥ℓ]

such that any equilibrium must live in 𝑋 . We focus on this box without loss of
any generality, and we observe that it is nonempty, compact, and convex.

Payoff functions. We address boundedness and quasiconcavity separately.
Boundedness. On the compact box 𝑋 , each 𝜏𝑖 is bounded and each 𝑒

𝜅𝑖 is
bounded below by 1. Define

𝑝𝑖(𝑥) =
𝜆𝑖 𝜏𝑖(𝑥𝑖)𝛼

𝜆1 𝜏1(𝑥1)𝛼 + 𝜆2 𝜏2(𝑥2)𝛼
. (155)
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Then 𝑝𝑖(𝑥) ∈ [0, 1], and for every 𝑥 ∈ 𝑋
2
,

0 ≤ 𝑈𝑖(𝑥) = 𝑝𝑖(𝑥) (𝑉 − 𝑘 (𝑒𝜅1(𝑥1) + 𝑒
𝜅2(𝑥2) − 2))

≤ 𝑉.
(156)

Thus𝑈𝑖 is bounded on 𝑋
2
.

Quasi-concavity. Fix the opponent’s action 𝑥−𝑖 ∈ 𝑋 and consider 𝑥𝑖 ↦

𝑈𝑖(𝑥𝑖 , 𝑥−𝑖). Write

log𝑈𝑖 = log 𝑝𝑖 + log𝐴, (157)

where

𝐴(𝑥) = 𝑉 − 𝑘 (𝑒𝜅1(𝑥1) + 𝑒
𝜅2(𝑥2) − 2) . (158)

(i) Concavity of log 𝑝𝑖 in 𝑥𝑖 . Let 𝑤𝑖(𝑥𝑖) = log𝜆𝑖 + 𝛼 log 𝜏𝑖(𝑥𝑖). Since 𝑔𝑖 =
log(1 + 𝜏𝑖) is concave, one obtains on {𝜏𝑖 > 0} the matrix inequality

∇2 log 𝜏𝑖 ⪯ −
1

𝜏2
𝑖 (1 + 𝜏𝑖)

∇𝜏𝑖 ∇𝜏
⊤
𝑖 ⪯ 0, (159)

so 𝑤𝑖 is concave. With the opponent fixed, set 𝐶 = 𝑒
𝑤−𝑖(𝑥−𝑖)

> 0 and note that

log 𝑝𝑖 = 𝑤𝑖 − log(𝑒𝑤𝑖 + 𝐶). (160)

Since 𝑤 ↦ 𝑤 − log(𝑒𝑤 + 𝐶) is increasing and strictly concave, log 𝑝𝑖(⋅, 𝑥−𝑖) is
concave on {𝜏𝑖 > 0}. Along {𝜏𝑖 = 0} the upper contour sets extend by closure
(axis values are 0 against a positive opponent and are set by convention on the
joint zero set), so log 𝑝𝑖 has convex upper contours on all of 𝑋 .

(ii) Concavity of log𝐴 in 𝑥𝑖 . Let𝐵𝑖 = 𝑒
𝜅𝑖 , which is strictly convex by assumption.

Then, for fixed 𝑥−𝑖 ,

∇2
𝑥𝑖 log𝐴 = −

𝑘

𝐴
∇2
𝐵𝑖 −

𝑘
2

𝐴2 ∇𝐵𝑖 ∇𝐵
⊤
𝑖 ⪯ 0, (161)

so log𝐴(⋅, 𝑥−𝑖) is concave on 𝑋 .
(iii) Quasi-concavity of 𝑈𝑖 . On {𝜏𝑖 > 0}, log𝑈𝑖 = log 𝑝𝑖 + log𝐴 is a sum of

concave functions, hence concave; therefore 𝑈𝑖 is log-concave and thus quasi-
concave there. By the boundary argument in (i), the upper contour sets extend
by closure to all of 𝑋 and remain convex. Therefore𝑈𝑖(⋅, 𝑥−𝑖) is quasi-concave
on 𝑋 .
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Better-reply secureness. We begin by recalling the definition of better-reply
secureness. Let 𝐺 = (𝑋𝑖 , 𝑈𝑖)𝑖∈{1,2} denote the game, with 𝑋 = 𝑋1 × 𝑋2 and𝑈 =

(𝑈1 , 𝑈2). A game is said to be better-reply secure if, for every pair (𝑥, 𝑢) ∈ 𝑋 ×R2

satisfying

𝑈(𝑥𝑛) ⟶ 𝑢 and 𝑥
𝑛
⟶ 𝑥, (162)

where𝑈𝑖(𝑥𝑛) ≤ 𝑢𝑖 for all 𝑛 and each state 𝑖, there exists at least one state 𝑖 and
an action 𝑥𝑖 ∈ 𝑋𝑖 such that

𝑈𝑖(𝑥𝑖 , 𝑥−𝑖) > 𝑢𝑖 ,
𝑈𝑖(𝑥𝑖 , 𝑦−𝑖) ≥ 𝑢𝑖 for all 𝑦−𝑖 near 𝑥−𝑖 .

(163)

Intuitively, even at any limit point of a sequence of approximate play, at least
one state can profitably and securely deviate—that is, choose a nearby action that
guarantees a payoff strictly exceeding the limit level 𝑢𝑖 against all sufficiently
small perturbations of the opponent’s action.

We now verify that the present game is better-reply secure. Let 𝑆𝑖 = {𝑥𝑖 ∈
𝑋 ∶ 𝜏𝑖(𝑥𝑖) = 0} denote the zero-technology set, and define

𝐷 = 𝑆1 × 𝑆2. (164)

The payoff functions𝑈𝑖 are continuous on 𝑋
2 \ 𝐷, so only points in 𝐷 require

attention.
Fix (𝑥∗1 , 𝑥∗2 ) ∈ 𝐷, a state 𝑖, and a small 𝜖 ∈ (0, 1). We will construct a

deviation 𝑥𝑖 and a neighborhood𝑉−𝑖 of 𝑥∗−𝑖 such that

𝑈𝑖(𝑥𝑖 , 𝑦−𝑖) ≥ (1 − 𝜖) (𝑉 −
𝜖𝑉
2 ) for all 𝑦−𝑖 ∈ 𝑉−𝑖 . (165)

Step 1: Small capability, small cost. Because 𝜏𝑖 is onto and continuous, we may
choose 𝑥𝑖 ∈ 𝑋 with 𝜏𝑖(𝑥𝑖) = 𝑡 > 0, as small as desired. Because 𝑒𝜅𝑖(𝑥𝑖) ↓ 1 as
𝑥𝑖 → 𝑆𝑖 and 𝐴 is continuous on 𝑋

2
, we may shrink 𝑡 such that

𝑘 (𝑒𝜅𝑖(𝑥𝑖) − 1) ≤
𝜖𝑉
4 . (166)

Step 2: Controlling the opponent near 𝑥∗−𝑖 . Set

𝛿𝜏 = ( 𝜖
1 − 𝜖

𝜆𝑖)
1/𝛼

𝑡 , (167)
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where 𝜆1 = 𝜆 and 𝜆2 = 1. Since 𝜏−𝑖(𝑥∗−𝑖) = 0 and 𝜏−𝑖 is continuous, there exists
a neighborhood𝑉(1)

−𝑖 of 𝑥∗−𝑖 such that

𝜏−𝑖(𝑦−𝑖) ≤ 𝛿𝜏 for all 𝑦−𝑖 ∈ 𝑉
(1)
−𝑖 . (168)

Then

𝑝𝑖(𝑥𝑖 , 𝑦−𝑖) =
𝜆𝑖 𝑡

𝛼

𝜆𝑖 𝑡
𝛼
+ 𝜏−𝑖(𝑦−𝑖)𝛼

≥ 1 − 𝜖. (169)

Because 𝑒𝜅−𝑖(𝑥∗−𝑖)
= 1 and 𝑒𝜅−𝑖 is continuous, there exists a neighborhood𝑉(2)

−𝑖 of
𝑥
∗
−𝑖 such that

𝑘 (𝑒𝜅−𝑖(𝑦−𝑖) − 1) ≤
𝜖𝑉
4 for all 𝑦−𝑖 ∈ 𝑉

(2)
−𝑖 . (170)

Let𝑉−𝑖 = 𝑉
(1)
−𝑖 ∩𝑉

(2)
−𝑖 .

Step 3: Uniform security bound. For every 𝑦−𝑖 ∈ 𝑉−𝑖 ,

𝑈𝑖(𝑥𝑖 , 𝑦−𝑖) = 𝑝𝑖(𝑥𝑖 , 𝑦−𝑖) [𝑉 − 𝑘 (𝑒𝜅𝑖(𝑥𝑖) + 𝑒
𝜅−𝑖(𝑦−𝑖) − 2)]

≥ (1 − 𝜖) [𝑉 − 𝑘 ((𝑒𝜅𝑖(𝑥𝑖) − 1) + (𝑒𝜅−𝑖(𝑦−𝑖) − 1))]

≥ (1 − 𝜖) (𝑉 −
𝜖𝑉
2 ) .

(171)

Since𝑈𝑖 ≤ 𝑉 everywhere, any sequence approaching (𝑥∗1 , 𝑥∗2 ) has lim sup ≤ 𝑉 .
Hence State 𝑖 can secure within 3

2𝜖𝑉 of the maximal limit payoff uniformly over
𝑉−𝑖 . Therefore, the game is better-reply secure at (𝑥∗1 , 𝑥∗2 ).

Conclusion. Because (𝑥∗1 , 𝑥∗2 ) ∈ 𝐷 and 𝑖 were arbitrary, the game is better-
reply secure. By Reny (1999), the existence of a pure-strategy Nash equilibrium
follows. [Back to the text.]

Next, we introduce the operators D that regularize technologies and costs to
be differentiable.

53 Definition
The regularization operator for technologies is a map

D ∶ T ⟶ T .

For each 𝜏 ∈ T , the function D(𝜏) is defined in three steps:
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1. Curvature chart. Define

𝜙(𝑥) = log(1 + 𝜏(𝑥)),

which, by the defining properties of T , is continuous, concave, and weakly increas-
ing in every coordinate.

2. Causal convolution smoothing. Extend 𝜙 to a concave, coordinatewise nonde-
creasing function on all of R𝐿 by

𝜙̃(𝑥) = inf
𝑦∈R𝐿+

inf
𝑔∈𝜕𝜙(𝑦)

{𝜙(𝑦) + ⟨𝑔, 𝑥 − 𝑦⟩} ,

where 𝜕𝜙(𝑦) is the superdifferential of 𝜙 at 𝑦.19 For each 𝜀 > 0, choose a smooth
nonnegative kernel 𝜂𝜀 supported in [0, 𝑐𝜀]𝐿 satisfying ∫R𝐿 𝜂𝜀(𝑢) 𝑑𝑢 = 1 and
define the causal convolution

𝜙̃𝜀(𝑥) = ∫
R𝐿

𝜙̃(𝑥 − 𝑢)𝜂𝜀(𝑢) 𝑑𝑢,

with the convention 𝜙̃0 = 𝜙̃. The restriction of 𝜙̃𝜀 to 𝑋 = R𝐿
+ is

𝜙𝜀 = 𝜙̃𝜀∣𝑋 ,

which is smooth, concave, and coordinatewise nondecreasing on 𝑋 .

3. Gauge and return to the original chart. Fix a nonempty compact set𝐾 ⊂ 𝑋 with
nonempty interior (for example, 𝐾 = [0, 2]𝐿) and a reference point 𝑥∗ ∈ int(𝐾)
(for example, 𝑥∗ = (𝑒 − 1)1). For 𝜙 = log(1 + 𝜏), define the normalized tame
template

𝑇𝛽(𝑥) ≔ 𝐴
∑ℓ∈𝐿 𝛽ℓ log(1 + 𝑥ℓ)
∑ℓ∈𝐿 𝛽ℓ log(1 + 𝑥∗ℓ )

, 𝐴 > 0, 𝛽 ∈ Δ𝐿.

Set the projection residual

𝑅T (𝜏) ≔ inf
𝐴>0,𝛽∈Δ𝐿

sup
𝑥∈𝐾

∣𝜙(𝑥) − 𝜙(𝑥∗)𝑇𝛽(𝑥)∣.

19Because 𝜙 is concave and finite on the open convex set R𝐿++, the superdifferential 𝜕𝜙(𝑦)
is nonempty for every 𝑦 ∈ R𝐿++. As for the boundary points 𝑦 ∈ 𝜕R𝐿+, we may take limits of
supergradients at interior points approaching 𝑦 to see that 𝜕𝜙(𝑦) is nonempty there as well.
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Choose a continuous strictly increasing gauge Θ ∶ [0,∞) → [0, 𝜀] with
Θ(0) = 0, and define

𝜀(𝜏) ≔ Θ(𝑅T (𝜏)).

The regularized technology is then

D(𝜏)(𝑥) = exp (𝜙𝜀(𝜏)(𝑥)) − 1.

We can now show that the operator works as intended.

54 Lemma
Fix the operator D ∶ T → T as in Definition 53. Then for every 𝜏 ∈ T :

1. Class preservation. D(𝜏) ∈ T . Equivalently,

(a) D(𝜏) is continuous on 𝑋 ;
(b) there exists 𝑣 ∈ 𝑋 such that 𝑡 ↦ D(𝜏)(𝑡𝑣) is continuous, strictly increas-

ing, and unbounded on [0,∞);
(c) D(𝜏) is weakly increasing in every coordinate; and
(d) log(1 +D(𝜏)) is concave on 𝑋 .

2. Smoothness. D(𝜏) ∈ 𝐶∞(𝑋).

3. Fixed points on tame technologies. If 𝜏 ∈ T [T], then D(𝜏) = 𝜏.

4. Continuity in 𝜏. The map D ∶ (T , 𝑑) → (T , 𝑑) is continuous with respect to
the compact-open metric 𝑑.

Proof. Write 𝜙 = log(1 + 𝜏) on 𝑋 . Let 𝜙̃ be the monotone-concave extension to
R𝐿, and let

𝜙𝜀 = (𝜙̃ ∗ 𝜂𝜀)∣𝑋 (172)

as in Definition 53. Set 𝜏̂ = exp(𝜙𝜀(𝜏)) − 1.
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Remark on compact bounds on 𝐴. On the compact set Δ𝐿 × 𝐾, the map
(𝛽, 𝑥) ↦ 𝑇𝛽(𝑥) is continuous and strictly positive. Hence

𝑐min ≔ min
(𝛽,𝑥)∈Δ𝐿×𝐾

𝑇𝛽(𝑥) > 0, 𝑐max ≔ max
(𝛽,𝑥)∈Δ𝐿×𝐾

𝑇𝛽(𝑥) < ∞. (173)

Let

𝑚𝜙 = min
𝑥∈𝐾

𝜙(𝑥), 𝑀𝜙 = max
𝑥∈𝐾

𝜙(𝑥). (174)

Any minimizer (𝐴∗
, 𝛽∗) in the definition of 𝑅T (𝜏) satisfies

𝑚𝜙

𝑐max
≤ 𝐴

∗
≤

𝑀𝜙

𝑐min
. (175)

Consequently, the search over 𝐴 may be restricted to the compact interval

A𝜙 = [𝑚𝜙/𝑐max , 𝑀𝜙/𝑐min ]. (176)

Proof sketch. If 𝐴 < 𝑚𝜙/𝑐max, then for all 𝑥 ∈ 𝐾, 𝐴𝑇𝛽(𝑥) ≤ 𝐴 𝑐max < 𝑚𝜙 ≤ 𝜙(𝑥),
so the sup error at the point achieving𝑚𝜙 exceeds𝑚𝜙−𝐴 𝑐max and can be strictly
reduced by increasing𝐴. If𝐴 > 𝑀𝜙/𝑐min, then for all 𝑥 ∈ 𝐾,𝐴𝑇𝛽(𝑥) ≥ 𝐴 𝑐min >

𝑀𝜙 ≥ 𝜙(𝑥), so the sup error at the point achieving 𝑀𝜙 exceeds 𝐴 𝑐min − 𝑀𝜙

and can be strictly reduced by decreasing 𝐴.

Class preservation. We address each axiom in turn.

1. Continuity. The extension 𝜙̃ is concave on R𝐿, hence continuous on the in-
terior and upper semicontinuous everywhere. Convolution with a smooth
kernel 𝜂𝜀 produces a 𝐶∞ function 𝜙̃𝜀 = 𝜙̃ ∗ 𝜂𝜀 on R𝐿. Restricting to 𝑋
preserves continuity, and composition with 𝑥 ↦ exp(𝑥) − 1 preserves
continuity. Therefore 𝜏̂ is continuous.

2. Ray surjectivity. By the defining axiom for T , there exists 𝑣 ∈ 𝑋 such that
𝑡 ↦ 𝜏(𝑡𝑣) is continuous, strictly increasing, and unbounded on [0,∞).
Then

𝜙(𝑡𝑣) = log(1 + 𝜏(𝑡𝑣)) (177)

is continuous, nondecreasing, and unbounded. The extension satisfies
𝜙̃(𝑥) = 𝜙(𝑥) for 𝑥 ∈ 𝑋 , so along the ray 𝑡 ↦ 𝑡𝑣 we have 𝜙̃(𝑡𝑣) = 𝜙(𝑡𝑣).
The convolution

𝑡 ↦ 𝜙̃𝜀(𝑡𝑣) (178)
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is a positive average of translates of 𝜙̃ along the same ray; it inherits con-
cavity and nondecreasingness on [0,∞). Because the kernel has bounded
support, a bounded-window average of an unbounded function remains
unbounded. A concave, nondecreasing, unbounded function on [0,∞) is
strictly increasing. Therefore 𝑡 ↦ 𝜙𝜀(𝜏)(𝑡𝑣) is continuous, strictly increas-
ing, and unbounded, and the same holds for

𝑡 ↦ 𝜏̂(𝑡𝑣) = exp(𝜙𝜀(𝜏)(𝑡𝑣)) − 1. (179)

3. Weak monotonicity. By construction, 𝜙̃ is coordinatewise nondecreasing
on R𝐿: it is the infimum of affine majorants whose slopes 𝑔 ∈ 𝜕𝜙(𝑦)
satisfy 𝑔 ≥ 0 componentwise. Let 𝑥, 𝑦 ∈ R𝐿 with 𝑥 ≤ 𝑦 coordinatewise,
and let 𝑢 lie in the support of 𝜂𝜀, which is contained in the positive
orthant. Then 𝑥 − 𝑢 ≤ 𝑦 − 𝑢, so 𝜙̃(𝑥 − 𝑢) ≤ 𝜙̃(𝑦 − 𝑢). Integrating
against 𝜂𝜀 gives 𝜙̃𝜀(𝑥) ≤ 𝜙̃𝜀(𝑦). Restricting to 𝑋 and composing with the
increasing function 𝑥 ↦ exp(𝑥) − 1 yields that 𝜏̂ is weakly increasing in
each coordinate.

4. Concavity of log(1 + 𝜏̂). Translates of a concave function are concave, and
positive averages of concave functions are concave. Therefore 𝜙̃𝜀 is concave
on R𝐿, and 𝜙𝜀 is concave on 𝑋 . By definition,

log(1 + 𝜏̂) = 𝜙𝜀(𝜏) , (180)

so log(1 + 𝜏̂) is concave.

Smoothness. The convolution 𝜙̃𝜀 = 𝜙̃∗𝜂𝜀 is 𝐶∞ on R𝐿 because 𝜂𝜀 is a smooth
kernel. Hence 𝜙𝜀 = 𝜙̃𝜀∣𝑋 is 𝐶∞ on 𝑋 . Composition with 𝑥 ↦ exp(𝑥) − 1
preserves smoothness, so 𝜏̂ is 𝐶∞ on 𝑋 , and therefore in particular 𝜏̂ ∈ 𝐶

1,1(𝑋).

Fixed points on tame technologies. If 𝜏 ∈ T [T], then by construction 𝑅T (𝜏) =
0 and the gauge satisfies 𝜀(𝜏) = Θ(0) = 0. By the convention in Definition 53,
𝜙̃0 = 𝜙̃ and 𝜙0 = 𝜙̃∣𝑋 = 𝜙 on 𝑋 . Therefore

𝜏̂(𝑥) = exp(𝜙𝜀(𝜏)(𝑥)) − 1
= exp(𝜙(𝑥)) − 1
= 𝜏(𝑥),

(181)

so D fixes every tame technology.
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Continuity in 𝜏. Let (𝜏𝑛) converge to 𝜏 in the compact-open metric 𝑑. Then
𝜙𝑛 = log(1 + 𝜏𝑛) converges to 𝜙 = log(1 + 𝜏) uniformly on every compact
subset of 𝑋 . The monotone-concave extension operator 𝜙 ↦ 𝜙̃ is continuous for
uniform convergence on compacts.20 Hence 𝜙̃𝑛 → 𝜙̃ uniformly on compacts in
R𝐿. The convolution map ( 𝑓 , 𝜀) ↦ 𝑓 ∗𝜂𝜀 is continuous for uniform convergence
on compacts and continuous in 𝜀. The gauge 𝜀(⋅) = Θ(𝑅T (⋅)) is continuous on
(T , 𝑑). Therefore, we have uniform convergence on compact subsets of R𝐿:

𝜙̃𝑛 ∗ 𝜂𝜀(𝜏𝑛) ⟶ 𝜙̃ ∗ 𝜂𝜀(𝜏). (182)

Restricting to 𝑋 gives uniform convergence on compact subsets of 𝑋 :

𝜙𝑛,𝜀(𝜏𝑛) ⟶ 𝜙𝜀(𝜏). (183)

Finally, applying the smooth chart map ℎ ↦ exp(ℎ) − 1 yields

D(𝜏𝑛)(𝑥) = exp(𝜙𝑛,𝜀(𝜏𝑛)(𝑥)) − 1 ⟶ exp(𝜙𝜀(𝜏)(𝑥)) − 1 = D(𝜏)(𝑥),
(184)

uniformly on compact subsets of 𝑋 . Hence D ∶ (T , 𝑑) → (T , 𝑑) is continuous.

Conclusion. Having addressed all four points, the proof is complete.

55 Definition
The regularization operator for costs is a map

D ∶ K ⟶ K.

For each 𝜅 ∈ K, the function D(𝜅) is defined in three steps:

1. Convexity chart. Define

𝜓(𝑥) = exp(𝜅(𝑥)),

which, by the defining properties of K, is continuous, strictly convex, and strictly
increasing in every coordinate.

20For a concave, coordinatewise nondecreasing 𝜙, every compact 𝐾 ⊂ int(𝑋) admits 𝑀 < ∞
such that ∥𝑔∥ ≤ 𝑀 for all 𝑔 ∈ 𝜕𝜙(𝑦) and 𝑦 ∈ 𝐾. Hence the family of supporting hyperplanes
{𝜙(𝑦) + ⟨𝑔, 𝑥 − 𝑦⟩} is equicontinuous on compacts. Uniform convergence 𝜙𝑛 → 𝜙 then implies
𝜙̃𝑛 → 𝜙̃ uniformly on compacts.
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2. Causal convolution smoothing. Extend 𝜓 to a convex, coordinatewise strictly
increasing function on all of R𝐿 by

𝜓̃(𝑥) = sup
𝑦∈R𝐿+

sup
𝑔∈𝜕𝜓(𝑦)

{𝜓(𝑦) + ⟨𝑔, 𝑥 − 𝑦⟩} ,

where 𝜕𝜓(𝑦) is the subdifferential of 𝜓 at 𝑦.21 For each 𝜀 > 0, choose a smooth
nonnegative kernel 𝜂𝜀 supported in [0, 𝑐𝜀]𝐿 satisfying ∫R𝐿 𝜂𝜀(𝑢) 𝑑𝑢 = 1, and
define the causal convolution

𝜓̃𝜀(𝑥) = ∫
R𝐿

𝜓̃(𝑥 − 𝑢)𝜂𝜀(𝑢) 𝑑𝑢,

with the convention 𝜓̃0 = 𝜓̃. The restriction of 𝜓̃𝜀 to 𝑋 = R𝐿
+ is

𝜓𝜀 = 𝜓̃𝜀∣𝑋 ,

which is smooth, convex, and coordinatewise strictly increasing on 𝑋 .

3. Gauge and return to the original chart. For𝜓 = exp(𝜅), define the normalized
tame template

𝐶𝑞(𝑥) ≔ 𝐴
∑ℓ∈𝐿 𝑞ℓ 𝑥ℓ

∑ℓ∈𝐿 𝑞ℓ 𝑥
∗
ℓ

, 𝐴 > 0, 𝑞 ∈ Δ𝐿 ,

and the residual

𝑅K(𝜅) ≔ inf
𝐴>0,𝑞∈Δ𝐿

sup
𝑥∈𝐾

∣𝜓(𝑥) − 𝜓(𝑥∗)𝐶𝑞(𝑥)∣.

With the same gauge Θ as in Definition 53, define

𝜀(𝜅) ≔ Θ(𝑅K(𝜅)).

The regularized cost is then

𝜅̂(𝑥) = log(𝜓𝜀(𝜅)(𝑥)) − log(𝜓𝜀(𝜅)(0)).

We can again show that the operator works as intended.

21Because 𝜓 is convex and finite on the open convex set R𝐿++, the subdifferential 𝜕𝜓(𝑦) is
nonempty for every 𝑦 ∈ R𝐿++, and remains nonempty on the boundary by closure under limits of
interior subgradients.
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56 Lemma
Fix the operator D ∶ K → K as in Definition 55. Then for every 𝜅 ∈ K:

1. Class preservation. 𝜅̂ ≔ D(𝜅) belongs to K. Equivalently:

(a) 𝜅̂ is continuous on 𝑋 ;
(b) 𝜅̂(0) = 0;
(c) 𝜅̂(𝑥) → ∞ as ∥𝑥∥ → ∞;
(d) 𝜅̂ is strictly increasing in every coordinate; and
(e) exp(𝜅̂) is strictly convex on 𝑋 .

2. Smoothness. 𝜅̂ ∈ 𝐶
∞(𝑋).

3. Fixed points on tame costs. If 𝜅 ∈ K[T], then D(𝜅) = 𝜅.

4. Continuity in 𝜅. The map D ∶ (K, 𝑑) → (K, 𝑑) is continuous with respect to
the compact-open metric 𝑑.

Proof. Write 𝜓 = exp(𝜅) on 𝑋 . Let 𝜓̃ be the convex, coordinatewise nondecreas-
ing extension to R𝐿 from Definition 55, and set

𝜓𝜀 = (𝜓̃ ∗ 𝜂𝜀)∣𝑋 ,
𝜅̂(𝑥) = log(𝜓𝜀(𝜅)(𝑥)) − log(𝜓𝜀(𝜅)(0)).

(185)

We verify the axioms in order after another brief remark.

Remark on compact bounds on 𝐴. On the compact set Δ𝐿 × 𝐾, the map
(𝑞, 𝑥) ↦ 𝐶𝑞(𝑥) is continuous and strictly positive. Hence

𝑐
cost
min ≔ min

(𝑞,𝑥)∈Δ𝐿×𝐾
𝐶𝑞(𝑥) > 0, 𝑐

cost
max ≔ max

(𝑞,𝑥)∈Δ𝐿×𝐾
𝐶𝑞(𝑥) < ∞. (186)

Let

𝑚𝜓 = min
𝑥∈𝐾

𝜓(𝑥), 𝑀𝜓 = max
𝑥∈𝐾

𝜓(𝑥). (187)

Any minimizer (𝐴∗
, 𝑞

∗) in 𝑅K(𝜅) satisfies

𝑚𝜓

𝑐cost
max

≤ 𝐴
∗

≤

𝑀𝜓

𝑐cost
min

. (188)

Thus the search over 𝐴 may be restricted to the compact interval

A𝜓 = [𝑚𝜓/𝑐cost
max , 𝑀𝜓/𝑐cost

min ]. (189)

The proof is identical to the technology case, replacing 𝑇𝛽 and 𝜙 by 𝐶𝑞 and 𝜓.
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Continuity and centeredness. Convolution with a smooth kernel yields 𝜓̃𝜀 ∈

𝐶
∞(R𝐿), hence 𝜓𝜀 ∈ 𝐶

∞(𝑋) and continuous. The centering term ensures
𝜅̂(0) = 0.

Coerciveness. Since 𝜅 is coercive on 𝑋 , 𝜓 = exp(𝜅) is coercive on 𝑋 . The
extension satisfies 𝜓̃ = 𝜓 on 𝑋 . Convolution with a compactly supported
positive kernel preserves coerciveness: for ∥𝑥∥ large, all points 𝑥 − 𝑢 in the
kernel window remain large in 𝑋 , so 𝜓̃(𝑥 − 𝑢) is large and hence so is 𝜓𝜀(𝑥).
Therefore 𝜅̂(𝑥) → ∞ as ∥𝑥∥ → ∞.

Strict monotonicity. Fix 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≤ 𝑦 coordinatewise and 𝑥 ≠ 𝑦. Since
𝜓 is strictly increasing in every coordinate, 𝜓(𝑦) > 𝜓(𝑥). The extension agrees
with 𝜓 on 𝑋 , so 𝜓̃(𝑦) > 𝜓̃(𝑥). By continuity, there exists a neighborhood𝑈 of
0 in [0, 𝑐𝜀]𝐿 such that 𝜓̃(𝑦 − 𝑢) > 𝜓̃(𝑥 − 𝑢) for all 𝑢 ∈ 𝑈 ∩ 𝑋 . The kernel 𝜂𝜀
assigns strictly positive mass to𝑈 , hence

𝜓𝜀(𝑦) − 𝜓𝜀(𝑥) = ∫ (𝜓̃(𝑦 − 𝑢) − 𝜓̃(𝑥 − 𝑢))𝜂𝜀(𝑢) 𝑑𝑢 > 0. (190)

Therefore 𝜓𝜀 is strictly increasing in every coordinate, and so is 𝜅̂ = log(𝜓𝜀(𝜅))−
log(𝜓𝜀(𝜅)(0)).

Strict exp-convexity. Each translate 𝑧 ↦ 𝜓̃(𝑧 − 𝑢) is strictly convex on 𝑋

because 𝜓 is strictly convex and 𝜓̃ = 𝜓 on 𝑋 . A positive average of strictly
convex functions is strictly convex; therefore 𝜓𝜀 is strictly convex on 𝑋 . Hence
exp(𝜅̂) = 𝜓𝜀(𝜅) is strictly convex.

Smoothness. Since 𝜓𝜀 ∈ 𝐶
∞(𝑋) and log is smooth on (0,∞), it follows that

𝜅̂ ∈ 𝐶
∞(𝑋).

Fixed points on tame costs. If𝜅 ∈ K[T], then𝑅K(𝜅) = 0 and the gauge satisfies
𝜀(𝜅) = Θ(0) = 0. Thus 𝜓𝜀(𝜅) = 𝜓, and

𝜅̂(𝑥) = log(𝜓(𝑥)) − log(𝜓(0)) = 𝜅(𝑥) − 𝜅(0) = 𝜅(𝑥), (191)

using centeredness of 𝜅.
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Continuity in 𝜅. If 𝜅𝑛 → 𝜅 in the compact-open metric, then 𝜓𝑛 = exp(𝜅𝑛) →
𝜓 uniformly on compacts. The convex, coordinatewise monotone extension
operator 𝜓 ↦ 𝜓̃ is continuous for uniform convergence on compacts.22 The
convolution map ( 𝑓 , 𝜀) ↦ 𝑓 ∗ 𝜂𝜀 is continuous in both arguments for uniform
convergence on compacts, and the gauge 𝜀(⋅) = Θ(𝑅K(⋅)) is continuous on
(K, 𝑑).

Therefore, we have uniform convergence on compact subsets of R𝐿:

𝜓̃𝑛 ∗ 𝜂𝜀(𝜅𝑛) ⟶ 𝜓̃ ∗ 𝜂𝜀(𝜅). (192)

Restricting to 𝑋 gives uniform convergence on compact subsets of 𝑋 :

𝜓𝑛,𝜀(𝜅𝑛) ⟶ 𝜓𝜀(𝜅). (193)

Finally, applying the smooth chart map ℎ ↦ log(ℎ) − log(ℎ(0)) yields

D(𝜅𝑛)(𝑥) = log(𝜓𝑛,𝜀(𝜅𝑛)(𝑥)) − log(𝜓𝑛,𝜀(𝜅𝑛)(0)), (194)

which converges to

log(𝜓𝜀(𝜅)(𝑥)) − log(𝜓𝜀(𝜅)(0)) = D(𝜅)(𝑥) (195)

uniformly on compact subsets of 𝑋 . Hence D ∶ (K, 𝑑) → (K, 𝑑) is continuous.

Conclusion. Having addressed all four points, the proof is complete.

Now we are justified in writing out the proposition from the main text.

28 Proposition
There exists a continuous regularization operator

D ∶ T ×K ⟶ T [∞]
×K[∞]

,

such that

D∣T [T]×K[T] = idT [T]×K[T] ;

in other words, D fixes the tame functions. [Proof .]
22For convex, coordinatewise nondecreasing 𝜓, every compact 𝐾 ⊂ int(𝑋) admits 𝑀 < ∞ with

∥𝑔∥ ≤ 𝑀 for all 𝑔 ∈ 𝜕𝜓(𝑦) and 𝑦 ∈ 𝐾. Hence the supporting hyperplanes are equicontinuous
on compacts, and uniform convergence 𝜓𝑛 → 𝜓 implies 𝜓̃𝑛 → 𝜓̃ uniformly on compacts.
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Proof. This is a direct consequence of Lemmas 54 and 56; the reader may find the
actual constructions in Definitions 53 and 55. The reader may find all of these
immediately preceding this proof. [Back to the text.]

The next lemma confirms that the derivatives of the regularized technologies
and costs depend continuously on the input technology or cost, respectively.

57 Lemma
Let D𝜏 ∶ T → T be the technology regularization operator from Definition 53. Then
the derivative of the regularized technology depends continuously on the input under the
compact–open topology. Specifically, for every compact set 𝐾 ⊂ 𝑋 ,

𝜏𝑛 −→
𝑑

𝜏 ⟹ sup
𝑥∈𝐾

∥∇D𝜏(𝜏𝑛)(𝑥) −∇D𝜏(𝜏)(𝑥)∥ ⟶ 0.

Equivalently, the map

T ⟶ 𝐶 (𝑋 ;R𝐿) , 𝜏 ⟼ ∇D𝜏(𝜏),

is continuous when both spaces are endowed with the compact–open topology.
The analogous result holds for the cost regularization operator D𝜅 ∶ K → K; that is,

𝜅𝑛 −→
𝑑

𝜅 ⟹ sup
𝑥∈𝐾

∥∇D𝜅(𝜅𝑛)(𝑥) −∇D𝜅(𝜅)(𝑥)∥ ⟶ 0.

Proof. Fix a compact set 𝐾 ⊂ 𝑋 = R𝐿
+ and let (𝜏𝑛)𝑛∈N ⊂ T with 𝜏𝑛 −→

𝑑
𝜏. Write

𝜙𝑛 = log(1 + 𝜏𝑛), 𝜙 = log(1 + 𝜏), (196)

and let 𝜙̃𝑛 , 𝜙̃ denote their concave, coordinatewise nondecreasing extensions to
R𝐿 from Definition 53. For 𝜀 > 0, let 𝜂𝜀 be the causal kernel, and set

𝜙𝑛,𝜀 = (𝜙̃𝑛 ∗ 𝜂𝜀)∣𝑋 , 𝜙𝜀 = (𝜙̃ ∗ 𝜂𝜀)∣𝑋 . (197)

Finally, define the bandwidths

𝜀𝑛 = Θ(𝑅T (𝜏𝑛)), 𝜀 = Θ(𝑅T (𝜏)), (198)

and recall D𝜏(𝜏𝑛) = exp(𝜙𝑛,𝜀𝑛) − 1.
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Step 1 (Chart continuity). Since 𝑡 ↦ log(1 + 𝑡) is smooth and uniformly con-
tinuous on bounded sets, 𝜏𝑛 → 𝜏 uniformly on every compact implies 𝜙𝑛 → 𝜙
uniformly on every compact subset of 𝑋 . Hence,

∀𝐾
′
⋐ 𝑋 ∶ ∣𝜙𝑛 − 𝜙∣∞;𝐾′ → 0. (199)

Step 2 (Stability of the concave extension). Define the extension operator

𝐸[𝜑](𝑥) = inf
𝑦∈R𝐿+

inf
𝑔∈𝜕𝜑(𝑦)

{𝜑(𝑦) + ⟨𝑔, 𝑥 − 𝑦⟩}. (200)

Let 𝐾′′
⋐ R𝐿 be compact. If ∣𝜑1 − 𝜑2∣∞;𝐵 ≤ 𝛿 on a compact 𝐵 ⊃ 𝐾

′′ ∩ R𝐿
+, then

∣𝐸[𝜑1] − 𝐸[𝜑2]∣∞;𝐾′′ ≤ 𝛿. (201)

Reason: for any 𝑥 ∈ 𝐾
′′ and (𝑦, 𝑔) feasible for 𝐸[𝜑2], shifting the intercept of

the affine minorant for 𝜑1 changes the value by at most 𝛿, and taking infima
preserves this bound. Hence 𝐸 is 1-Lipschitz locally in the sup norm. Applying
this with 𝜑1 = 𝜙𝑛 , 𝜑2 = 𝜙 yields

∣𝜙̃𝑛 − 𝜙̃∣∞;𝐾′′ → 0. (202)

Step 3 (Convolution continuity and derivatives at fixed bandwidth). For fixed
𝜀 > 0, convolution with 𝜂𝜀 is continuous from the compact–open topology on
R𝐿 to 𝐶∞(R𝐿) and

∇(𝜙̃ ∗ 𝜂𝜀) = 𝜙̃ ∗ (∇𝜂𝜀). (203)

For every compact 𝐾′′
⋐ R𝐿,

∣∇(𝜙̃𝑛 ∗ 𝜂𝜀) −∇(𝜙̃ ∗ 𝜂𝜀)∣∞;𝐾′′ ≤ ∣𝜙̃𝑛 − 𝜙̃∣∞;𝐾′′+[0,𝑐𝜀]𝐿 ∥∇𝜂𝜀∥𝐿1 → 0.
(204)

Restricting to 𝑋 gives, for every compact 𝐾 ⋐ 𝑋 ,

∣∇𝜙𝑛,𝜀 −∇𝜙𝜀∣∞;𝐾 → 0. (205)

Step 4 (Continuity of the bandwidth selection). The residual

𝑅T (𝜏) = inf
𝛽∈Δ𝐿

sup
𝑥∈𝐾0

∣𝜙(𝑥) − 𝜙(𝑥∗)𝑇𝛽(𝑥)∣ (206)
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is continuous in 𝜏 because the map (𝜙, 𝛽, 𝑥) ↦ 𝜙(𝑥)−𝜙(𝑥∗)𝑇𝛽(𝑥) is continuous
on the compact set 𝐾0 ×Δ𝐿, and infima and suprema over compact sets preserve
continuity. As Θ is continuous and strictly increasing, we obtain 𝜀𝑛 → 𝜀.

Step 5 (Joint continuity in function and bandwidth). Let 𝐾 ⋐ 𝑋 be fixed. For
𝜀′ , 𝜀 > 0,

∇(𝜙̃ ∗ 𝜂𝜀′)(𝑥) −∇(𝜙̃ ∗ 𝜂𝜀)(𝑥) = 𝜙̃ ∗ (∇𝜂𝜀′ −∇𝜂𝜀)(𝑥). (207)

Since 𝜀′ ↦ ∇𝜂𝜀′ is continuous in 𝐿1 and 𝜙̃ is locally bounded, we obtain

∣∇𝜙𝜀′ −∇𝜙𝜀∣∞;𝐾 −−−→
𝜀′→𝜀

0. (208)

Combining with Step 3 and 𝜀𝑛 → 𝜀 yields joint continuity:

∣∇𝜙𝑛,𝜀𝑛 −∇𝜙𝜀∣∞;𝐾 → 0. (209)

Step 6 (Return to original chart and product rule). Set 𝑢𝑛 = 𝜙𝑛,𝜀𝑛 and 𝑢 = 𝜙𝜀.
Then

∇D𝜏(𝜏𝑛) = ∇( exp(𝑢𝑛) − 1) = exp(𝑢𝑛)∇𝑢𝑛 , (210)
∇D𝜏(𝜏) = ∇( exp(𝑢) − 1) = exp(𝑢)∇𝑢. (211)

From Steps 3–5 we have 𝑢𝑛 → 𝑢 and ∇𝑢𝑛 → ∇𝑢 uniformly on 𝐾. Since
𝑧 ↦ exp(𝑧) and (𝑎, 𝑏) ↦ 𝑎𝑏 are continuous and 𝑢𝑛 are uniformly bounded on
𝐾, it follows that

sup
𝑥∈𝐾

∣∇D𝜏(𝜏𝑛)(𝑥) −∇D𝜏(𝜏)(𝑥)∣ ⟶ 0. (212)

As 𝐾 ⋐ 𝑋 was arbitrary, the claimed continuity in the compact–open topology
follows.

Costs. For 𝜅𝑛 −→
𝑑

𝜅, repeat the argument with the convex chart 𝜓𝑛 = exp(𝜅𝑛),
the convex extension

𝜓̃(𝑥) = sup
𝑦∈R𝐿+

sup
𝑔∈𝜕𝜓(𝑦)

{𝜓(𝑦) + ⟨𝑔, 𝑥 − 𝑦⟩}, (213)

the same causal kernel family, and the normalization

𝜅̂𝑛 = log(𝜓𝑛,𝜀𝑛) − log(𝜓𝑛,𝜀𝑛(0)). (214)
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Step 2 is replaced by the analogous 1-Lipschitz stability for convex extensions.
The normalization term depends continuously on (𝜓, 𝜀) by Step 5 (evaluate at
𝑥 = 0). The same product and chain rule argument yields

sup
𝑥∈𝐾

∣∇D𝜅(𝜅𝑛)(𝑥) −∇D𝜅(𝜅)(𝑥)∣ → 0. (215)

This completes the proof.

58 Lemma
The tamification maps are continuous in the compact–open topology on T [∞] and K[∞]

when defined via the regularized derivatives at 0:

T𝜏 ∶ T
[∞]

⟶ T [T]
, T𝜅 ∶ K[∞]

⟶ K[T]
,

where

𝐴𝜏 ≔ ∑
ℓ∈𝐿

𝜕ℓ(D𝜏(𝜏))(0),

𝛽ℓ ≔
𝜕ℓ(D𝜏(𝜏))(0)

𝐴𝜏
,

T𝜏(𝜏)(𝑥) ≔ 𝐴𝜏 ∑
ℓ∈𝐿

𝛽ℓ log(1 + 𝑥ℓ),

and

𝐴𝜅 ≔ ∑
ℓ∈𝐿

𝜕ℓ(D𝜅(𝜅))(0),

𝑞ℓ ≔
𝜕ℓ(D𝜅(𝜅))(0)

𝐴𝜅
,

T𝜅(𝜅)(𝑥) ≔ 𝐴𝜅 ∑
ℓ∈𝐿

𝑞ℓ 𝑥ℓ .

Proof. We do technologies; costs are analogous.
By Lemma 57, the map

T ⟶ 𝐶(𝑋 ;R𝐿), 𝜏 ⟼ ∇D𝜏(𝜏) (216)

is continuous for the compact–open topology. Evaluating at 0 is continuous on
𝐶(𝑋 ;R𝐿), hence

𝜏 ⟼ 𝐷(D𝜏(𝜏))(0) (217)
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is continuous from T [∞] (with the compact–open topology) into R𝐿.
On the open cone

𝐶 ≔ {𝑎 ∈ R𝐿
≥0 ∶ ∑

ℓ

𝑎ℓ > 0}, (218)

the normalization map

𝑁 ∶ 𝐶 ⟶ (0,∞) × Δ𝐿 , 𝑎 ⟼ (𝐴 = ∑
ℓ

𝑎ℓ , 𝛽ℓ = 𝑎ℓ/𝐴) (219)

is continuous. For 𝜏 ∈ T , coordinatewise monotonicity of D𝜏(𝜏) implies
𝐷(D𝜏(𝜏))(0) ∈ 𝐶.

Finally, the assembly map

(𝐴, 𝛽) ⟼ [ 𝑥 ↦ 𝐴∑
ℓ∈𝐿

𝛽ℓ log(1 + 𝑥ℓ) ] (220)

is continuous from (0,∞) × Δ𝐿 into T [T] endowed with the compact–open
topology. Composing the three continuous maps

𝜏 ⟼ ∇(D𝜏(𝜏))(0) ⟼ (𝐴𝜏 , 𝛽) ⟼ T𝜏(𝜏) (221)

yields continuity of T𝜏.
For costs, replace log(1+ 𝑥ℓ) with 𝑥ℓ and use Lemma 56 to obtain continuity

of

𝜅 ⟼ ∇(D𝜅(𝜅))(0). (222)

Normalization and assembly are the same, giving continuity of T𝜅.

29 Lemma
For all (𝜏, 𝜅) ∈ T [T] ×K[T], we have T(𝜏, 𝜅) = (𝜏, 𝜅). [Proof .]

Proof. Let (𝜏, 𝜅) ∈ T [T] ×K[T], and let

𝜏(𝑥) = 𝐴𝜏 ∑
ℓ∈𝐿

𝛽ℓ log(1 + 𝑥ℓ), 𝜅(𝑥) = 𝐴𝜅 ∑
ℓ∈𝐿

𝑞ℓ 𝑥ℓ , (223)

where 𝐴𝜏 , 𝐴𝜅 > 0 and 𝛽, 𝑞 ∈ Δ𝐿 witness their tameness.
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By direct differentiation,

𝜕𝜏

𝜕𝑥ℓ
(0) = 𝐴𝜏𝛽ℓ ,

𝜕𝜅

𝜕𝑥ℓ
(0) = 𝐴𝜅𝑞ℓ . (224)

Therefore,

∑
𝑗∈𝐿

𝜕𝜏

𝜕𝑥 𝑗
(0) = 𝐴𝜏 , ∑

𝑗∈𝐿

𝜕𝜅

𝜕𝑥 𝑗
(0) = 𝐴𝜅 , (225)

and hence the normalized weights computed by T are

𝛽
′
ℓ ≔

𝜕ℓ𝜏(0)
∑𝑗∈𝐿 𝜕𝑗𝜏(0)

=
𝐴𝜏𝛽ℓ
𝐴𝜏

= 𝛽ℓ ,

𝑞
′
ℓ ≔

𝜕ℓ𝜅(0)
∑𝑗∈𝐿 𝜕𝑗𝜅(0)

=
𝐴𝜅𝑞ℓ
𝐴𝜅

= 𝑞ℓ .

(226)

Similarly, the scales recovered by T are

𝐴
′
𝜏 = ∑

𝑗∈𝐿

𝜕𝑗𝜏(0) = 𝐴𝜏 , 𝐴
′
𝜅 = ∑

𝑗∈𝐿

𝜕𝑗𝜅(0) = 𝐴𝜅 . (227)

Substituting these values into the definition of T yields

T(𝜏, 𝜅) = (𝐴′
𝜏 ∑
ℓ∈𝐿

𝛽
′
ℓ log(1 + 𝑥ℓ), 𝐴′

𝜅 ∑
ℓ∈𝐿

𝑞
′
ℓ 𝑥ℓ)

= (𝐴𝜏 ∑
ℓ∈𝐿

𝛽ℓ log(1 + 𝑥ℓ), 𝐴𝜅 ∑
ℓ∈𝐿

𝑞ℓ 𝑥ℓ) = (𝜏, 𝜅).
(228)

Hence T acts as the identity on T [T] ×K[T]. [Back to the text.]

30 Proposition
T [T] ×K[T] is a strong deformation retract of T ×K. [Proof .]

Proof. We handled most of the details in the main text, but we can be more
explicit here. Recall that the homotopies

𝐻 ∶ [0, 1] × T ×K ⟶ T ×K, (229)
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are defined for the technologies by

{((1 + 𝜏)1−2𝑡 ⋅ (1 +D𝜏(𝜏))2𝑡 − 1) , 𝑡 ∈ [0, 1/2],
((1 +D𝜏(𝜏))2−2𝑡 ⋅ (1 + (T𝜏 ◦D𝜏)(𝜏))2𝑡−1 − 1) , 𝑡 ∈ [1/2, 1],

(230)

and for the costs by

{log((1 − 2𝑡) exp𝜅 + 2𝑡 expD𝜅(𝜅)), 𝑡 ∈ [0, 1/2],
log((2 − 2𝑡) expD𝜅(𝜅) + (2𝑡 − 1) exp(T𝜅 ◦D𝜅)(𝜅)), 𝑡 ∈ [1/2, 1].

(231)

Since the D operators are continuous by Lemmas 54 and 56 and the T operators
are continuous by Lemma 58, it follows that 𝐻 is continuous. Moreover, at 𝑡 = 0,
we have𝐻(0, 𝜏, 𝜅) = (𝜏, 𝜅), and at 𝑡 = 1, we have𝐻(1, 𝜏, 𝜅) = (T𝜏◦D𝜏(𝜏),T𝜅◦
D𝜅(𝜅)); by construction, these are tame. Since bothD andTfix tame technologies
and costs by Lemmas 29, 54 and 56, it follows that 𝐻(𝑡 , 𝜏, 𝜅) = (𝜏, 𝜅) for all 𝑡
whenever (𝜏, 𝜅) is tame.

Therefore, the only thing we really need to show is that the homotopy remains
in T × K for all 𝑡 ∈ [0, 1]. We will keep this brief; write 𝜙𝑡 = log(1 + 𝜏𝑡) and
𝜓𝑡 = exp(𝜅𝑡).

1. Technologies. For each 𝑡 ∈ [0, 1], the function 𝜏𝑡 defined above satisfies:

(a) Continuity: Each 𝜏𝑡 is continuous since the defining operations (addi-
tion, multiplication, exponentiation, and logarithm) are continuous
and the composing functions 𝜏, D𝜏(𝜏), and (T𝜏 ◦D𝜏)(𝜏) are contin-
uous.

(b) Monotonicity: Each of𝜙0 = log(1+𝜏), 𝜙D, and𝜙T◦D is coordinatewise
nondecreasing. Since 𝜙𝑡 is a convex combination of these functions
on each interval, it is also coordinatewise nondecreasing. Hence
𝜏𝑡 = exp(𝜙𝑡) − 1 is coordinatewise nondecreasing.

(c) Log-Concavity: Concavity of 𝜙𝑡 follows because a convex combination
of concave functions is concave. Therefore log(1+𝜏𝑡) = 𝜙𝑡 is concave.

(d) Ray surjectivity: Let 𝑣0 , 𝑣D ∈ 𝑋 witness ray surjectivity for 𝜏 and
D𝜏(𝜏) respectively. Set 𝑣𝑡 = 𝑣0 + 𝑣D. Because each 𝜙𝑖 is coordinate-
wise nondecreasing,

𝜙𝑖(𝑠𝑣𝑡) ≥ 𝜙𝑖(𝑠𝑣𝑖) (232)

for all 𝑠 ≥ 0, and the right-hand sides diverge to +∞. Thus 𝜙𝑡(𝑠𝑣𝑡)
is unbounded and strictly increasing in 𝑠, implying that 𝜏𝑡(𝑠𝑣𝑡) =
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exp(𝜙𝑡(𝑠𝑣𝑡)) − 1 is continuous, strictly increasing, and unbounded
along that ray. The same reasoning applies for 𝑡 ∈ [ 1

2 , 1] using 𝑣D
and 𝑣T◦D. Hence 𝜏𝑡 is ray surjective.

2. Costs. For each 𝑡 ∈ [0, 1], the function 𝜅𝑡 defined above satisfies:

(a) Continuity: Continuity of 𝜅𝑡 follows from the same reasoning as for
𝜏𝑡 .

(b) Monotonicity: Each 𝜓𝑖 = exp(𝜅𝑖) is coordinatewise strictly increasing,
and convex combinations preserve coordinatewise increase. Hence
𝜓𝑡 is strictly increasing and so is 𝜅𝑡 = log(𝜓𝑡).

(c) Convexity: Convex combinations of convex functions are convex, so
𝜓𝑡 is convex and exp(𝜅𝑡) = 𝜓𝑡 remains convex.

(d) Coerceiveness: This is closed under convex combinations, so𝜅𝑡 remains
coercive.

(e) Centering: 𝜅𝑡(0) = 0 for all 𝑡, and 𝜅𝑡 remains finite on compact sets.

We therefore conclude that 𝜅𝑡 ∈ K for all 𝑡; this is the final piece we needed
before concluding that 𝐻 is a homotopy in T × K, and thus T[T] × K[T] is a
strong deformation retract of T ×K. [Back to the text.]

33 Proposition
PT[T]×K[T] is a convex set. [Proof .]

Proof. Choose and fix any 𝑚 ∈ 𝑀, which we will suppress from notation when-
ever possible. In case 𝑚 = 0, the result is trivial, as the only solution to the
production problem SPP (𝑚, 𝜏, 𝜅) is 𝜋𝜏,𝜅(0) = 0. We therefore suppose 𝑚 > 0.
Let 𝜋0 and 𝜋1 be the solutions to the production problem SPP (𝑚, 𝜏, 𝜅) for
two tame pairs (𝜏0 , 𝜅0) and (𝜏1 , 𝜅1), with parameters (𝐴𝜏,0 , 𝛽0 , 𝐴𝜅,0 , 𝑞0) and
(𝐴𝜏,1 , 𝛽1 , 𝐴𝜅,1 , 𝑞1), respectively. Define the interpolated state

𝜋𝑡 ≔ (1 − 𝑡)𝜋0 + 𝑡𝜋1 ,

for 𝑡 ∈ [0, 1]. We will construct tame parameters (𝐴𝜏(𝑡), 𝛽𝑡 , 𝐴𝜅(𝑡), 𝑞𝑡) and
multipliers (𝜆𝑡 , 𝜂𝑡) such that𝜋𝑡 satisfies the first-order conditions FOC (𝑚, 𝜏, 𝜅)
for (𝜏𝑡 , 𝜅𝑡).
Step 1: Choosing 𝑞𝑡 . Pick any 𝑞𝑡 ∈ Δ𝐿 with strictly positive coordinates; for
definiteness, take 𝑞ℓ𝑡 = 1/𝐿.
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Step 2: Defining 𝛽𝑡 . Set

𝑐𝑡 ≔
⎛
⎜
⎝
∑
𝑗∈𝐿

(1 + 𝜋
𝑗

𝑡)𝑞
𝑗

𝑡

⎞
⎟
⎠

−1

, 𝛽
ℓ
𝑡 ≔ 𝑐𝑡(1 + 𝜋

ℓ
𝑡)𝑞ℓ𝑡 for all ℓ ∈ 𝐿. (233)

Then 𝛽𝑡 ∈ Δ𝐿, 𝛽ℓ𝑡 ⩾ 0 for all ℓ , and this choice ensures that a common multiplier
𝜆𝑡 can satisfy all stationarity conditions simultaneously.

Step 3: Setting the scale parameters. Let 𝐴𝜅(𝑡) > 0 be arbitrary (for simplicity, take
𝐴𝜅(𝑡) = 1) and define

𝑆𝑡 ≔ ∑
ℓ∈𝐿

𝛽
ℓ
𝑡 log(1 + 𝜋

ℓ
𝑡), 𝐴𝜏(𝑡) ≔

𝑚

𝑆𝑡
. (234)

Then the feasibility condition 𝑚 − 𝐴𝜏(𝑡)∑ℓ∈𝐿 𝛽
ℓ
𝑡 log(1 + 𝜋ℓ𝑡) = 0 holds by

construction.

Step 4: Determining the multipliers. Define

𝜆𝑡 ≔
𝐴𝜅(𝑡)
𝐴𝜏(𝑡) 𝑐𝑡

, 𝜂
ℓ
𝑡 ≔ 𝐴𝜅(𝑡)𝑞ℓ𝑡 − 𝜆𝑡

𝐴𝜏(𝑡)𝛽ℓ𝑡
1 + 𝜋ℓ𝑡

. (235)

By the definitions of 𝛽𝑡 , 𝑐𝑡 , and 𝜆𝑡 , it follows that 𝜂ℓ𝑡 = 0 for all ℓ ∈ 𝐿, so the
complementarity conditions 𝜂ℓ𝑡𝜋

ℓ
𝑡 = 0 are satisfied automatically.

Step 5: Verification. For every ℓ ∈ 𝐿,

𝐴𝜅(𝑡)𝑞ℓ𝑡 − 𝜆𝑡
𝐴𝜏(𝑡)𝛽ℓ𝑡
1 + 𝜋ℓ𝑡

− 𝜂
ℓ
𝑡 = 0, (236)

and the feasibility condition holds by Step 3. Thus, the full system FOC(𝑚, 𝜏𝑡 , 𝜅𝑡)
is satisfied. Because𝜋𝑡 is a convex combination of𝜋0 and𝜋1, the mapping 𝑡 ↦ 𝜋𝑡
is continuous, and the construction above produces a corresponding tame pair
(𝜏𝑡 , 𝜅𝑡) for each 𝑡 ∈ [0, 1].
Conclusion. The interpolated state 𝜋𝑡 therefore solves the production problem
for some tame pair (𝜏𝑡 , 𝜅𝑡) for every 𝑡 ∈ [0, 1]. Hence the set of tame states
PT [T]×K[T] is convex. [Back to the text.]
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