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The whole machinery of our intelligence, our general ideas and laws, fixed and external objects,
principles, persons, and gods, are so many symbolic, algebraic expressions. They stand for
experience; experience which we are incapable of retaining and surveying in its multitudinous
immediacy. We should flounder hopelessly, like the animals, did we not keep ourselves afloat and
direct our course by these intellectual devices. Theory helps us to bear our ignorance of fact.

George Santayana, The Sense of Beauty ( )

Principles and opinions can seldom reduce the path of reason to a simple line. As in all practical
matters, a certain latitude always remains. Beauty cannot be defined by abscissas and ordinates;
neither are circles and ellipses created by their algebraic formulas. The man of action must
at times trust in the sensitive instinct of judgment, derived from his native intelligence and
developed through reflection, which almost unconsciously hits the right course.

Carl von Clausewitz, On War ( )

Man has always had recourse to violence; sometimes this recourse was a mere crime, and does not
interest us here. But at other times violence was the means resorted to by him who had previously
exhausted all others in defence of the rights of justice which he thought he possessed. It may be
regrettable that human nature tends on occasion to this form of violence, but it is undeniable
that it implies the greatest tribute to reason and justice. For this form of violence is none other
than reason exasperated. Force was, in fact, the ultima ratio. Rather stupidly it has been the
custom to take ironically this expression, which clearly indicates the previous submission of force
to methods of reason.

José Ortega y Gasset, The Revolt of the Masses ( )

What is force?

It is common for authors to take great rhetorical pains to persuade the reader
that their research question is important: important enough to justify the effort of
addressing it, or—at the very least—important enough to justify skimming the
first few bits of the answer. No such pains will be taken here. This is not because
your humble author thinks his own research question unimportant—far from
it—but rather because the question is so obviously important that it requires no
furtherjustification. This is evident from the fact that the word “force” occupies a
central place in the vocabulary of international relations. States possess “armed
forces” and engage in “uses of force” or the occasional “show of force;” they
“project” force and “balance” it; they “apply” force and “threaten” it. More
dynamically, they “mobilize,” “stockpile,” and “build up” their forces, not to
mention “combining” or “allying” them. Whatever it is that the word “force”
points to, it is clearly a central concept in the study of international relations,
salt in the waters we swim. There is no better reason to ask what it is.
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Simple questions often beget complicated answers, and “What is force?” is
no exception. This is not just because of the subtlety of the concept of force
itself, but also because of the form of the question. Questions of the form “What
is X?” are difficult because they are ontological questions. They ask not for
a definition of X in terms of other things—or more to the point, a meaning
to assign the word “X” using other words—but for the nature of X itself, its
essential features, its defining characteristics, its place in the web of knowledge.
To be sure, definitions—and speaking more semantically, coding rules—offer
clarity and useful intuitions. But they cannot grasp the full essence of “What is
X?” questions, at least not for any Xes worth deeming “important.”

If the form of the question is at least partially to blame for its difficulty, then
we would do well to consider the form of the answer. This sets our task: to
provide an answer to the question “What is force?” that is both clear and useful,
that is both precise and comprehensive, that is both rigorous and accessible.
We take as inspiration the famous slogan attributed to philosopher Willard Van
Orman Quine: “To be is to be the value of some variable (or the values of some
variables).”" In other words, to say that something exists is to say that it is one
among the values that some variable can take. We care less about one force
or another—say, the United States’s Armed Forces in 2024—and more about
the general concept of force, the variable that takes these values, the class of
things generated by the predicate “— is a force.” To answer the question is to
accommodate each of a variable’s values: values past, present and future; values
actual, possible, and impossible; values real, ideal, and imaginary. Moreover, it
is to accommodate the nature of the variable itself: its structure, it properties, its
relations to other variables, its place in the grand scheme of things. Definitions
alone are woefully inadequate for this task, as they cannot trace out the contours
of the class of things to which a concept refers. They provide neither the values
of the variable nor its nature, treating only the symptoms of our ignorance.

And yet, if you and I are to work on this question as a we, we must have
some common ground, even if only on an intuitive level. The theory to follow
comes equipped with a mathematical model, and such models are useful only
after we imbue them with meaning. Indeed, the model is similar to models
from other disciplines—physics, logic, computer science—so it is not poised to
provide its own meaning like more tailored models often do. In the absence of
such guidance, we need an orienting principle; in the absence of such a principle,
our interpretations of the same model might diverge too wildly for comfort.

"The quotation as given is but one of many formulations of what’s now called Quine’s criterion
of ontological commitment, this particular one due to George Boolos ( ). See relevant articles in
the Stanford Encyclopedia of Philosophy (e.g., , ; , )-



As such, we will not use the word “force” loosely, which is difficult because
it admits many meanings. The most relevant senses in which the most recent
edition of the Oxford English Dictionary defines it are:

force, n. [fors] I. Strength, power.

3. Power or might (of a ruler, realm, or the like); esp. military
strength or power.

4. Concretea. Abody of armed men, an army. In plural the troops
or soldiers composing the fighting strength of a kingdom or
of a commander in the field; also in attributive use or in the
possessive, esp. during the war of 1939-1945.

Digging in, the most relevant senses of “strength” and “might” are:

strength, n. [strey(k)0] II. A person or thing that has, gives, or
shows the quality of being strong.

10. Military.

a. Collectively: troops, armed forces; the ships of a navy; per-
sonnel, equipment, or resources for waging war or defending
against attack.

b. A body of soldiers; an armed force. Cf. sense I1.15a. Now
literary and somewhat rare.

c. The number of people on the muster roll of an army, a regiment,
anavy, (now) an air force, etc.; the number of ships in a navy or
fleet, or of aircraft in an air force. Also: the personnel making
up such a number. Cf. sense II.15a.

15.a. The number of people, animals, or things forming a set or unit;
a number used or acting together; a complement.

might, n. [mart] 3. Great strength, imposing power. Now somewhat
rhetorical. b. As an attribute of a person or other living creature, or
of nation or other group or collection of people: physical or men-
tal strength or powers, commanding influence, military resources,
extent of power.

These definitions are striking for their tangibility: ships and aircraft, soldiers and
animals, war and fighting, and so on. My impression is that the most ordinary
usage of the word “force” relevant for our purposes is indeed material in nature.
We are discussing the resources relevant for the production of the means of war,
and so proceed as materialists.



We wish to theorize the thing to which these selected definitions point,
and with the exception of Section 0 and the conclusion, the remainder of this
manuscript is devoted to that task.” This involves both the introduction of theo-
retical concepts and mathematical machinery. The structure of the manuscript
reflects the structure of the theory and its machine, so in previewing the former
we preview the latter. We will proceed in four parts.

§ In Section 1, we observe the essential fact that force is atomic: comprised
of individual units that cannot be further divided. Such units are the
basic building blocks of force, the smallest things that can be called forces.
These can be as simple as a naked human body or as complex as a modern
aircraft carrier. This suggests that atoms arrive in various sorts called
elements, and the elements of force are indeed the model’s first primitive.
From these elements, we may build up more complicated structures called
molecules, which represent the combination of elements into a single unit.
A soldier is one thing, a soldier equipped with and trained in the use of a
rifle another, and a soldier trained in the use of a rifle and a tank a third
thing still. These molecules are the model’s smallest functional units.

§ In Section 2, we observe that force is a resource: a thing that can be used to
produce other things. Molecules may be gathered into a single entity called
a configuration, which collects molecules without forcing them to interact.
Just as hydrogen and oxygen can be collected without forming water, so too
canasoldier and a tank be collected without forming an integrated fighting
force. This process might be concatenated many times, allowing us to
consider three hundred hoplites without necessarily fashioning them into
a phalanx. This raises questions about how one would go about fashioning
a phalanx out of three hundred hoplites, and we answer this by providing
a theory of force conversion. To make hydrogen and oxygen into water, some
process must by applied or some reagent introduced; to turn a recruitand a
pile of equipment into a soldier, some training must be conducted or some
doctrine introduced. By disentangling the configuration and conversion
operations on force, we can begin to understand the relationships between
forces. We take a political-economic approach to this, thinking of various
conversion processes as costly in the context of cost-calibration scheme.
Remarkably, this simple logic provides equips our model with a rich
structure—in particular, a metric structure that allows us to reason about
inter-force relationships by thinking in spatial terms.

%Section 0 acknowledges the limitations of the concept of force with respect to the (perhaps)
more fundamental concept of power. The conclusion concludes—!!!—the manuscript.



§ In Section 3, we observe that force is organized: it is not a mere collection
of resources, but a collection of resources that are arranged in a particular
way. In modern times it is difficult to conceive of a fighting force that is
not organized in one way or another, and it’s easy to become dazzled with
the bureaucratic complexity of modern militaries. Few things represent
this complexity better than an organizational chart, which is a diagram
that shows how the resources of a force are arranged. Thus, this section
includes a theory of org charts. We begin by introducing the concept of a
force structure, which is a way of organizing the resources of a force. Then
comes the question of how to assign each component of a force structure
with its own resources, and we answer this by providing a theory of
force allocation. Remarkably, the relationship between a structure and its
resources is analogous to the relationship between a force molecules and
its elements, so the same mathematical machinery that allows us to reason
about the latter allows us to reason about the former. Finally, we introduce
a theory of restructuring, which allows us to turn one structured force into
another just the same way that we turn a recruit and a panoply into a
hoplite. This, too, allows us to transport intuitions from the configurational
level to the organizational level, so that the class of all things one could
call a structured force is endowed with a metric structure. This completes
the ontological aspect of the program, as we arrive at the variable that
takes the values of all things that could be called a force.

§ In Section 4, we observe that force is a concept: it is not just a thing in the
world, butalso a way of thinking, a tool of the mind designed for navigating
the world. It is a word we use when issuing comparisons about the things
we call forces: one mightbe “more,” “less,” or “equally” forceful as another.
If the pursuit of power includes the pursuit of force, then purpose-driven
force-pursuers require some way of comparing forces. Otherwise, they
have no way of knowing whether their path is better or worse than another.
This raises questions about how decision-makers navigate the vast space
of possible forces, and we answer this by providing two theories. The first,
a warm-up, is a theory of force emulation, wherein an emulator begins from
their status quo and moves towards a target force by restructuring their
own force. The second, the main event, is a theory of force comparison,
wherein a comparor issues comparisons between pairs of forces a la a
preference relation. The structure developed in the earlier sections makes
it easy to identify the conditions under which such comparisons reduce
the vast space of possible forces to a single, numerically-valued dimension,
which we call a force scale.



This roadmap suggests an arduous journey, and frankly, this is what it is.
To make things more palatable, I should like to call your attention to some
recurring themes to look out for. Though these themes are not necessarily part
of the argument proper, they certainly play an important part in the narrative.

¢ The discrete nature of force. By the manuscript’s end, the reader will likely
be tired of hearing that a given class of objects can be stored in a countable
set. Thisis a consequence of the model’s atomic nature, itself a consequence
of a materialist orientation. The calculus so common to applied researchers
of optimal decisions is replaced by a discrete mathematics more amenable
to the study of the relationships between forces. This is not to say that the
model is not useful for decision-making—just useful in a different way.

¢ The fractal nature of force. As hinted at in the preview, the model is
structured in such a way that the same mathematical machinery can be
applied at different levels of analysis. Atoms are part of molecules, which
are part of configurations, which are part of structures, and so on. This
allows us to reason about the relationships between forces at different
levels of abstraction, and to transport intuitions from one level to another.

¢ Motion. Though the model is not dynamic, its underlying logic is. We
conceive of the distance between two forces as the cost it would take to get
from the first to the second. Put differently, we reason about relationships
between forces in terms of motion, making the space of possible forces a
vast landscape. This metaphor suggests that it is the relationships between
forces that are most important, not the forces themselves.

¢ Generativity. Molecules are more than collections of atoms, configurations
are more than collections of molecules, and structures are more than
collections of configurations; the whole is more than the sum of its parts.
The tools we use to reason about combinations must be as minimalist as
possible, else we might draw unwarranted conclusions reflecting not just
our ignorance but also our lack of analytic control.

¢ Rationality and subjectivity. The model identifies some key parts of the
force-maker’s decision-making process, and these moments are marked
by a tension between rationality and subjectivity. We seek not to identify
a single rational decision-making process, but to understand what would
have to be true about the force-maker’s reasoning for her to be modeled
by the model. We work hard to impose as little structure as possible on
this reasoning, and this introduces subtle, but important, wrinkles.

Hopefully, these themes will provide guidance as you navigate the manuscript.



0 What Force is Not (or, An Apology to Power)

7

But before we proceed, I must acknowledge the omission of the word “power”
from the above definitions, not to mention its omission from the remainder of
the manuscript after this brief apology. The word is among the most terrifying
in the whole of the liberal arts, much less 1.R. Of course, this is because it is
so sacred to so many theories spanning so many disciplines across so many
centuries. What is more, we are all aware of the wide variety of circumstances in
which we detect power, from meeting a significant other’s parents to threatening
nuclear war. For all its charms, the O.E.D. is an insultingly-feeble reference for
a word that has its own encyclopedia ( , )-

We in 1.R. might cherish the word more than most, as we can trace its usage
back to some of our earliest texts. Thucydides, in his History of the Peloponnesian
War, concludes that “The growth of the power of Athens, and the alarm which
this inspired in Lacedaemon, made war inevitable” ( , Chapter I). But
even here, what is meant by power is not entirely clear.” Certainly, Thucydides
means material power in some sense; for example, Themistocles” build-up of
the Athenian navy—twenty triremes a year over ten years—is a clear example
of the growth of Athenian power in the material sense. And to be sure, the
expansion of the Delian League had an impact on the material power of Athens
and its allies, though this is far less important than its political and economic
effects. It has been argued that Athens did not actually gain much material
power in the run-up to war—see the later chapters of ( ) for a detailed
discussion—but it is hard to explain away 6,000 talents in the treasury.

The problem just described—the increase in power of one state leading to the
alarm of another—has been coined Thucydides’ Trap by Graham Allison ( )-
All of his examples include shifting power among states, but the nature of that
power is nearly always something that goes well beyond mere material power:
empire building, alliances, trade, and so on. Though material shifts accompany
these changes, they are not the only changes; ordinary users often mean more
than material power when employing the word.

3The relevant passage in the original Greek is:
[...] Touc Adnvaioug Nyoluo peydhoug yiyvouévoug [...].

The word fyoUuou is a form of the verb fiy¢ouo; the most relevant sense in which Lidell-Scott-
Jones defines it is “to lead, command in war.” yeydoug is an adjective meaning “great” or “large,”
and yiyvopévoug is a form of the verb yiyvopou, which means “to come into being.” The phrase
translates more literally as “the Athenians becoming great in their ability to lead.” Strikingly,
the more standard words for power—d0vauig, Loy ig, or pohopon, which point to power in many
ways, including military power—are not used here. The word “power” is in the very first English
translation of the History, due to Thomas Hobbes in 1628, and appears in all others I have seen.



One exceptional user of the word “power” is Kenneth N. Waltz, whose Theory
of International Politics ( ) turns on the concept. Waltz alludes to Secretary of
State Henry Kissinger’s address at the third Pacem in Terris convocation ( )-
There Kissinger acknowledges multiple forms of power:

The most striking feature of the contemporary period, the feature
that gives complexity as well as hope, is the radical transformation
in the nature of power. Throughout history power has generally
been homogeneous. Military, economic, and political potential were
closely related. To be powerful, a nation had to be strong in all
categories. Today the vocabulary of strength is more complex.

But Waltz accepts the Kissingerian view only in part: he accepts that there are
many forms, but he insists that they are not so neatly separable:

States, because they are in a self-help system, have to use their
combined capabilities in order to serve their interests. The economic,
military, and other capabilities of nations cannot be sectored and
separately weighed. States are not placed in the top rank because
they excel in one way or another. Their rank depends on how they
score on all of the following items: size of population and terri-
tory, resource endowmment, economic capability, military strength,
political stability, and competence (p. 131, emphasis original).

Later on in the Theory, Waltz links the concepts of power and force more explicitly.
Clearly, there are some lines Waltz refuses to cross:

[A] confusion about power is found in its odd definition. We are
misled by the pragmatically formed and technologically influenced
American definition of power—a definition that equates power with
control. Power is then measured by the ability to get people to do
what one wants them to do when otherwise they would not do it
(cf. , )- That definition may serve for some purposes, but it
ill fits the requirements of politics. To define “power” as a “cause”
confuses process with outcome. To identify power with control is
to assert that only power is needed in order to get one’s way. That is
obviously false, else what would there be for political and military
strategists to do? To use power is to apply one’s capabilities in an
attempt to change someone else’s behavior in certain ways (p. 191).

Thus, power has a material basis: the capabilities of states, where presumably
these cover the capabilities he listed earlier. Save for political stability and
competence, these are material in nature.



Fellow Realist John J. Mearsheimer’s Tragedy of Great Power Politics ( ) is
less subtle in its materialist approach. Mearsheimer asserts: “Power is is based on
the particular material capabilities that a state possesses. The balance of power,
therefore, is a function of tangible assets—such as armored divisions and nuclear
weapons—that each great power controls” (p. 55).4 Complementing assets
already in possession—i.e., military power itself—is latent power, which depends
on related, but separate, assets. Among these are wealth and population, which
provide the wealth and personnel required to build military forces. To these
Mearsheimer attaches technology, yet another necessary incredient for mustering
force. But in the final analysis, “a state’s effective power is ultimately a function
of its military forces and how they compare with the military forces of rival states”
(p. 55). Power is force, and force is material. Kissinger’s notions of distinct,
not-necessarily-mutually-reinforcing forms of power take no haven here.

Mearsheimer identifies a gap between latent power and military power: not
all states with the capacity to build massive forces—and here he means large,
wealthy states—actually do so. Why not? He offers three reasons (pp. 75-82):

1. Diminishing returns to military power: “Spending more makes little sense
when a state’s defense effort is subject to diminishing returns (that is, if
its capabilities are already on the ‘flat of the curve’) or if opponents can
easily match the effort and maintain the balance of power.”

2. Heterogeneous efficiency: “It is also unwise to liken the distribution of eco-
nomic might with the distribution of military might because states convert
their wealth into military power with varying degrees of efficiency.”

3. Multiple sorts of force: “States can buy different kinds of military power,
and how they build their armed forces has consequences for the balance
of power. [...] The key issue here is whether a state has a large army with
significant power-projection capability. But not all states spend the same
percentage of their defense dollars on their army, and not all armies have
the same power-projection capabilities.”

Mearsheimer the theorist of power becomes Mearsheimer the political economist:
states otherwise animated as power-hungry machines are subject to constraints
about technology and the relative worth of additional defense spending in the
face of diminishing returns—which is to say, the opportunity cost of force.

“This is the very thing I will be calling “force” in the sequel, right down to the fact that it is
a function of tangible assets. In a sense, then, the model to follow is a model of Mearsheimer’s
power, which is itself something of a limiting case of other approaches to power. I will retain my
humble agnosticism on the matter out of respect for, and agreement with, more nuanced views.
However, it is worth examining the Mearsheimer view, as it foreshadows the model to follow.



The most developed theory of power in the hybrid sense Kissinger foresees
is due to Susan Strange, who in her States and Markets ( , quotations from pp.
29-30) identifies four structures of power in international political economy:

1. The Security Structure: “Solong as the possibility of violent conflict threatens
personal security, he who offers others protection against that threat is
able to exercise power in other non-security matters like the distribution
of food or the administration of justice.”

2. The Production Structure: “Who decides what shall be produced, by whom,
by what means and with what combination of land, labour, capital and
technology and how each shall be rewarded is as fundamental a question in
political economy as who decides the means of defence against insecurity.”

3. The Finance Structure: “Finance—the control of credit—is the facet which
has perhaps risen in importance in the last quarter century more rapidly
than any other and has come to be of decisive importance in international
economic relations and in the competition of corporate enterprises. [...] Its
power to determine outcomes—in security, in production and in research—
is enormous.”

4. The Knowledge Structure: “Knowledge is power and whoever is able to
develop or acquire or to deny the access of others to a kind of knowledge
respected and sought by others; and whoever can control the channels by
which it is communicated to those given access to it, will exercise a very
special kind of structural power.”

Strange is clear that these structures are not separate; they are interdependent
and mutually reinforcing. Indeed, she takes Realists Past (.., Waltz) and Realists
Future (e.g., Mearsheimer) to task for hyperfixation on the security structure:

The realist school of thought in international relations has held
that in the last resort military power and the ability to use coercive
force to compel the compliance of others must always prevail. In
the last resort, this is undeniably true. But in the real world, not
every relationship is put under such pressure. Not every decision is
pushed to such extremes. There are many times and places where
decisions are taken in which coercive force, though it plays some
part in the choices made, does not play the whole, and is not the
only significant source of power (pp. 31-32).

Again, Strange grants the material basis of power, but she insists that power is
not merely material. Further, it is not hard to see how productive, financial, and
epistemic power can influence security power.
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Formal models in the 1.R. literature, particularly those that carry on the
Realist tradition, seem to take a very materialist approach to power. To take
two prominent examples, James D. Fearon ( ) and Robert Powell ( ) both
write down dynamic models of interstate bargaining where power is measured
simply by the ability to win wars; should two states go to war, one of them
expects to win with probability p, the other with probability 1 — p. To become
stronger is to increase one’s probability of winning, and to become weaker
is to decrease it. To be sure, this probability is influenced by things that go
beyond material power: morale, tactics, the terms of the battlefield, first- or
second-strike capabilities, and so on. But tellingly, Powell embraces the idea
that power is a tool of destruction: “[...] the use of power is inefficient in that it
destroys some of the flow” of the dynamic benefits states experience without
war (p. 181). One could try to tell stories about how these benefits are harmed
by non-material factors—perhaps His Majesty’s tea tastes more bitter with his
kingdom at war—but these seem overwrought. The most natural interpretation
is that the benefits are material in nature, and that the destruction of the flow is
a destruction of material benefits. It is worth noting that in both of these papers,
and many others of their ceuvre, the word “power” is used much more often
than the word “force”; in ( ), for example, “power” is used over one
hundred times, “force” roughly ten.’

But since most ordinary users of the word “power” mean more than material
power, the model given here should not be interpreted in its light. This is an
important scope limitation, but it is necessary to do justice to the literature and to
the word itself. Thatsaid, most ordinary users of the word “power” grant it some
material basis—with varying degrees of centrality—so we remain interested in
a concept of extraordinary importance. Personally, my conception of power is
closest to Strange’s, and the endogenous variable studied here falls short of the
structures she identifies. Instead, the model to follow is a model of Strange’s
security structure of power, where the state organizes its resources to produce
force. In keeping with Strange’s view of the ongoing interplay of the structures,
the model links this process to aspects related to the production, finance, and
knowledge structures of power. Here ends the apology on power. Let us begin.

>The relative-material-capabilities approach to power is common in the empirical literature
on conflict. A recent survey ( , ) identified 94 articles in top political
science journals over a ten year span that included predictors (or controls) based on ratios of the
Compositite Index of National Capability (c1nc) score ( , ). Many
of these articles use variables of the form
CINCy¢

Pr(State 1 defeats State 2 in time t) = m

€ [0,1],

where CcINC;; is the cINC score of State i at time ¢.
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1 Force is Atomic

Closing one’s eyes and imagining a state’s force, one does not see a blob; instead,
one sees a collection of tanks, ships, planes, an soldiers, each a little piece of
force in its own right. Force is atomic in the sense that it is made up of many
little pieces of force, which (for lack of a better term) we call atoms. For all its
nauseating science envy, the metaphor purchases us a great deal of intuition.

1. Elementariness. Atoms come in sorts, each with its own properties. Just
as hydrogen and helium are different sorts of physical atoms, so too are
tanks and planes different sorts of military atoms. A good theory of force
should respect these differences.

2. Familiality. These elements may be organized into families. Helium and
neon are both noble gases and thus share certain properties; likewise, the
Dreadnought and Iowa battleship classes are both battleships and thus
share certain properties. Being constructed by different states in different
eras, they could quite plausibly be different force elements; nevertheless,
their battleshippiness is a commonality. A good theory of force should
respect these commonalities.

3. Isotopy. Within a force element there may be subtle differences. Carbon
has fourteen known isotopes, each with a different number of neutrons
and thus different physical properties; however, any of them behave as
carbon does in most chemical reactions. Similarly, a tank might have a
different gun, a different engine, or a different crew, but it is still a tank,
and it still behaves as a tank does in most military operations. A good
theory of force should respect these similarities.

4. Configurability. Atoms can be arranged in different ways. A hydrogen
atom might arrive in a single atom, or in a deuterium molecule with
another hydrogen atom, or in a water molecule with one hydrogen and
one oxygen atom; a tank might arrive alone, or with air support, or as part
of a larger armored division. The properties of the atom are the same, but
the properties of the molecule are different. A good theory of force should
respect these differences.

It is hoped that the theory developed here will indeed pay the appropriate
respects to these features of force and that the reader will find it useful in
understanding the structure of force. There are sure to be moments where
the metaphor bends too far for comfort—or breaks entirely—but the reader is
encouraged to keep in mind that both the theory and the metaphor are tools,
and that the goal is to use them to understand the structure of force better.
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The theory begins with a set of force elements.

1.1 Primitive (Elements of Force)

There is a nonempty, countable index set L enumerating the elements of force.

The primitive L is a set of force elements, each of which is a sort of thing that
makes up the state’s force. Its elements include tanks, ships, planes, soldiers,
and so on; we will typically write this in fixed-width font and capital letters, as
in TANK, SHIP, PLANE, and SOLDIER. Whatever different sorts of things convey
force, they are enumerated in L.

Though so deep the primordial ooze as to defy intuitions, we should never-
theless take a moment to assess what commitments we have made. What does it
mean to say that force arrives in little packets and that these packets arrive in a
countable number of sorts? Well, consider the case where |L| = 1, meaning that
there is only one sort of force element. As we know only that this element bears
force—indeed, something is a force if and only if it is borne by this element—we
can say nothing about the element itself, and thus may only name it FORCE. To
name it anything else would be to make a commitment about its properties,
and we know only that it bears force. This is a perfectly reasonable approach,
and it is in essence what is asserted by formal models where militarization or
mobilization is unidimensional. Unpacking L, then, serves to examine all of the
assumptions implicit in the unidimensional approach. This is not to say that
the unidimensional approach is wrong; it is simply to say that it is a choice, and
that it is a choice that should be made consciously. It simply may be the case
that one would want to know about LAND FORCE, SEA FORCE, and AIR FORCE, or
about ARMORED VEHICLEs, DESTROYERs, and FIGHTERSs, or about M1 ABRAMS, USS
ARIZONA, and F-22 RAPTORs. Conversely, if |L| = N, then there are infinitely
many sorts of force elements, which leaves open the possibility that a new sort
of tool might be invented that would be useful in war. The choice of L is a
choice about the granularity of the model, and it is a choice that should be
made consciously. In our interpretation, L is however granular it needs to be as
to meaningfully encode the thinking of the force-maker. As we have allowed
L to be (countably) infinite if need be, we can always add more elements if
we need to, metatheoretically, to think about the force in a more granular way.
Countability restricts attention to those concepts that can be listed, the way
bureaucrats classify, list, and count things. Thus, 18MM MORTAR does not present
any special problems even though a gun’s caliber could be any real number;
when force-makers speak of such things, they speak of them as if they were
countable, and so we will treat them as such. This requires some special care,
but nothing that cannot be managed.
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Though L is a primitive, we retain wide latitude in how it is specified,
used, and interpreted. The point here is less to identify actual elements than to
acknowledge that the state’s force is made up of many different sorts of things.
Here the natural familiality of force elements is a key feature.

1.2 Definition (Classification of Force Elements)

A classification scheme is a partition of the set of force elements into equivalence
classes called families. Given two classification schemes L1 and L, we say that L is
finer than L, if every family in L4 is a subset of a family in L,.

The complete enumeration of elements is a classification scheme, but so too is
the division of elements into land, sea, and air forces. The former is finer than
the latter, as it appreciates differences between infantry and armor, between
destroyers and carriers, and between fighters and bombers. The latter is coarser
than the former, as it lumps these differences together.

Classification schemes facilitate the (good faith) conversation you and I are
having right now. Thus, I might refer to ARMORED VEHICLEs, or to TANKs, or to
the M1 ABRAMS, and you will know what I mean. We can always move from
very granular to very coarse classification by way of some aggregation function;
given an atom of lithium and an atom of sodium, I can always say I have two
atoms of alkali metal. Moving from the coarse to the granular is more difficult,
as this aggregation is inherently lossy. If I told you that I had two atoms of alkali
metal, you would not know if I had two atoms of lithium, two atoms of sodium,
or one of each. But this analysis will proceed as if we could always stop and take
more granular inventory of the force elements if we so desired, which means
that the model is generally agnostic to whether we’re working with L itself or
with some classification scheme. We will generally refer to the elements as L
itself, but the reader should keep in mind that we could always be working with
a classification scheme. This theme will recur throughout the manuscript.

States often strive to keep L under control. In the early days of the Roman
Republic, the state might have had little control over the elements of its force,
as soldiers were expected to provide their own equipment. By the time of the
Roman Empire, the state had taken control of the elements of its force, provid-
ing soldiers with standardized equipment and training. As new technologies
develop, the degree of standardization waxes and wanes. For example, after
the development of gunpowder, muskets became a common sort of force; but,
early muskets demonstrated wide variety in terms of caliber, barrel length, and
firing mechanism. Maurice of Nassau—Prince of Orange and admirer of Ceesar—
famously standardized the musket and the drill, making Dutch forces both more
effective and cheaper to build and maintain ( , , Chapter 4).
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Chemists talk about more than just raw elements; they also talk about
compounds. So too must the theorist of force. Prior to bonds, atoms are just
atoms; when bonded, they become something more. Just as three moles of water
is not the same as two moles of from and one mole of oxygen, so too is a hoplite
distinct from a soldier and shield. Let us define the basic unit of force.

1.3 Definition (Force Molecule)
A force molecule is a connected’ labeled graph (n, E,l:n— L) where:

1. n € N is the size of the molecule;
2. Ec QZ is the edge set of the molecule;

3. { : n — L labels the atoms of the molecule with their elemental type.

The reader should think of a force molecule as a sort of Lego model of a piece
of force. The atom set n = {1,...,n} is the set of Lego bricks, the bond set is
the set of connections between them, and the labeling is the set of stickers on
the bricks. Trivial as it might seem, such a molecule conveys a great deal of
information: how many atoms it contains (the atom set), how they are connected
(the bond set), and what sorts of atoms they are (the labeling). The edge set is a
set of ordered pairs of atoms, representing the bonds between them: soldier to
shield, captain to ship, pilot to plane.

Now, strictly speaking, two force molecules might be strictly different even if
we think they should be treated as the same. For example, consider two simple
molecules defined on 3: one with a soldier holding a shield and a spear, the other
with a soldier holding a spear and a shield. These molecules are isomorphic, but
not identical: after all, in the first molecule the second atom is labeled SHIELD
and the third SPEAR, while in the second molecule the second atom is labeled
SPEAR and the third SHIELD. We purchase clarity with pedantry in the following
definition, which provides us with our first chance to announce our ignorance
of those details encoded via isomorphism.

1.4 Remark (Isomorphism of Molecules)

Two force molecules My = (n, E1,4) and M, = (m, Ey, {,) are isomorphic just in
case there is a bijection ¢ : n — m such that (i,j) € Ey ifand only if (p(i), ¢(j)) €
Eyand (i) = & (@(i)) forall i € n. We write this My = M,.

Ismorphic molecules share all structural properties; in this work, we treat them
as the same, ignoring tedious labeling details.

6By a connected graph, we mean that for any two atoms a,,4s € 1, there is a sequence of
vertices a1, ..., ay such that a1 = a,, ay = a.,and (a;,a;+1) € E foralli € {1,...,k —1}.
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To give an example of a force molecule, consider the hoplite molecule in
Figure 1. The hoplite was the standard infantry soldier of ancient Greece. Its

LONCHE

1

ASPIS

T

SOLDIER —— > DORY

|

KRANOS THORAX KNEEMIDES

Figure 1: A hoplite molecule, dory/lonche variant.

most characteristic element was a heavy wooden shield, the donic (aspis), which
was often adorned with an identifying device like the Aoy yn (lonche), the Adumnag
(Iampas), or the dotpov (astron). The panoply also included a helmet (xpdvoc,
kranos), a breastplate (Ocpag, thorax), greaves (xvnuidec, kneemides), and a sword
(Elgpocg, xiphos) or spear (66pu, dory). Absenta panoply, a hoplite, quite simply, was
not a hoplite; in particular, a hoplite without a shield was a pupdomnic (ripsaspis), a
shield-caster, a term of derision; the departing soldier was given the command
1) Tav 1) €L Tdc (€ tan é epi tds), “with your shield or on it.”

But though a hoplite needed his panoply, a panoply did not a hoplite make.
To suggest otherwise would be to ignore the training, the discipline, the battle
technique, and the esprit de corps that made the hoplite such a formidable force.”
Indeed, our machine is designed to avoid the pitfalls of such a reductionist view:
the whole may be the same, or more, or less than the sum of its parts, where

7See Donald Kagan and Gregory F. Viggiano’s edited volume Men of Bronze ( ), especially
the chapter by Viggiano and Hans van Wees ( ), for fascinating details.

8In Section 2, we develop a theory for two important operations on force molecules:

1. the act of gathering various military resources into a single unbonded collection, which
we will call a force configuration; and

2. the act of turning one force configuration into another, which we will call force conversion.

The former involves a binary operation on force molecules (Primitive 2.1) while the latter involves
morphisms defined on the free monoid of force molecules generated by that operation (Primi-
tive 2.9). These two primitives form the foundation of our resource theory of force (Section 2).
We’ve much to do, and the reader’s kind patience is appreciated.
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identity and comparisons are calibrated by a machine of our own making.
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The theory takes a set of force molecules as a primitive.

1.5 Primitive (Force Molecules)
There is a set
M; < U {E € Py(n)|(n E) is connected} x L™
neN

containing the force molecules. Each force element is a force molecule of size one:

(1,2,{(1,£)}) e M foralll € L.

The reader should think of IM; as a vast collection of kinds of force, each with
its own properties and behaviors. The force molecules are the basic building
blocks of the state’s force, and the theory will be built up from them. As such,
we care about the structure of the set of force molecules; the following useful
result gets us started down the path.

1.6 Lemma (Force Molecules are Countable)

M is countable.

Proof. It suffices to show that the right-hand side of the inclusion in Primitive 1.5
is countable. We will do so by showing that it is a countable union of countable
sets; choose any n € IN, and observe:

1. The set of labeled connected graphs on 7 is finite. There are 2(;) possible
graphs on 1; this sets an upper bound on the number of connected graphs.
Now consider a function with domain the connected graphs of n and
codomain L. Since L is countably infinite, the set of functions from the
connected graphs of 1 to L is countably infinite as well.

2. Forsimilar reasons, the set of functions from the finite set #1 to the countable
set L is countably infinite.

3. Since the previous two sets are countable, so too is their Cartesian product.

Since this holds for all n € NN, the right-hand side is a countable union of
countable sets, and is thus countable; since IM; is a subset of this set, it is
countable as well. We are done. [

For all its richness, the set of force molecules is countable, and thus isomorphic
to some subset of the natural numbers. This is a useful result, as it allows us
to enumerate all force molecules, and thus to reason about them systematically
without losing track of any of them.
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2 Force is a Resource

In Section 1, we developed an atomic theory of force. For all the highfalutin
discursiveness, the substantive assertion is quite simple: force is made up of
elements, and these elements can be combined into molecules. Formally, this
justifies a graph-theoretic approach to force, where the elements are the vertices
and the relationships between elements are the edges. The set of all molecules,
M|, capably represents a wide variety of force configurations.

We justified the atomic approach by arguing that we speak of force as if it
were atomic and that we construct molecules from these elements. This is a
good start, but it is only a start. To justify deeper interpretations of M} and
things built from it, we need to dig deeper into the nature of force. To that end,
we make our second primary assertion about force: it is a resource. The most
relevant senses in which the O.E.D. defines the word “resource” are as follows:

resource, n. ['ri,sors]

2. A means of supplying a deficiency or need; something that is a
source of help, information, strength, etc.

3. In plural.

a. Stocks or reserves of money, materials, people, or some other
asset, which can be drawn on when necessary. In modern use
frequently the second element in compounds.

b. The collective means possessed by a country or region for its
own support, enrichment, or defence.

In all of these senses, a resource is a means to some end: a remedier of deficiencies,
a source of help, a stockpile of assets. The relevant concept is deeply pragmatic.

In introducing their “Mathematical Theory of Resources,” Bob Coecke, To-
bias Fritz, and Robert W. Spekkens ( ) delineate the dynamist and pragmatic
traditions of theory-building. The former describes systems in the absence of
human intervention, where the focus is on the system’s intrinsic properties.
The latter describes systems in the presence of human intervention, where the
focus is on the system’s utility to humans. Remarkably, “The more a scientific
discipline is concerned with aspects close to human life and society, the more
relevant this aspect is” (p. 59). It is in the pragmatic tradition that Coecke, Fritz,
and Spekkens situate their theory of resources, and it is in this tradition that we
situate our theory of force as a resource, too.

9Remarkably, the O.E.D. supplements this definition a link to the entry for “natural,” as in
“natural resources.” Here we think of natural resources as only part of the story, and, what is more,
it seems that “natural” is capable of modifying “resources” in other senses of the latter.
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2.1 Mise en Place

Just as a chemist must gather the substances they wish to combine in various
quantities, so too must the force-maker gather the force molecules. The first task
is simply to mise en place, to gather the necessary ingredients.

2.1 Primitive (Force Configuration)

There is a binary operation & representing the configuration of two force molecules. It
has the following properties:

1. Unitality: letting O, == (0, @, @) be the void force, we have
MwyOy, =M =0p, M forall M € My;

2. Associativity: for all My, My, M3 € M|, we have"’
(M1 UM2) WM; =MW (M2 L*’JM3); and

3. Commutativity: for all My, M, € M}, we have

M;w M, =M, w M.

The @ operator is a way of combining force molecules into a single configuration
without performing any conversion. It allows the force-maker to gather the
necessary ingredients for the construction of force, namely by using the word
“and.” If M is a force molecule representing a soldier and M, is a force molecule
representing a shield, then M; W M, is a force molecule representing a soldier
and a shield. This need not be a soldier skilled in the use of a shield, nor a shield
designed for a soldier; it is simply a soldier and a shield in the same place at the
same time. Likewise, if M; and M, are two soldiers, there are no implications
about their relationship; M; W M, is simply two soldiers in the same place at
the same time. The three properties of the W operator are relatively mild and
mimic the properties of addition in number theory, which comports with the
idea that W represents the word “and” in the present context.

10Associa’civity allows us to write M1 W My W M3, and indeed to write

n
HMi =My w oM,
i=1

Letting M = Mjy, ..., M;, be a sequence of force molecules, we write [t} M for My @ --- & M,,.
Arbitrary combinations may be written [ M € M], where M is a sequence of force molecules
M : N - M. Atrisk of obnoxiousness—*risk!”—we explicitly write |+) M when referring to
configurations of force molecules; without the [+, we are referring to molecules themselves.
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Just as M is a subset of the set of all connected graphs labeled by L, so too
is the set of all force configurations a subset of the free monoid generated by M,
under the ¥ operator.

2.2 Primitive (Force Configurations)

The set of all force configurations is

n
MZ c NZ = {H M;
i=1

neN,M,...,M, e]ML}.

Naturally, M € MJ forall M € My.

The concept of a free monoid is quite common in the study of algebraic struc-
tures; simply put, it is the set of all combinations of some set of objects under
some operation. In number theory, the natural numbers are the free monoid
generated by the set {1} under the operation of addition; any natural number is
a combination of 1 added to itself some number of times. In string theory, the
set of all words in some alphabet is the free monoid generated by that alphabet
under the operation of concatenation; any word is a combination of letters from
the alphabet. And in the present context, the set of all force configurations is
the free monoid generated by the set of force molecules under the operation of
configuration; any configuration is a combination of force molecules.

Clearly, M} < MJ; we have expanded our set of objects of study. However,
we have not expanded too much:

2.3 Lemma (Countable Configurations)

M is countably infinite.

Proof. It will suffice to show that ]1VIZ is countably infinite, as M is a subset of
it. We can write M] as

n
(s
neN li=1

Each of the sets in the union is countable, and the union of countably many
countable sets is countable. Thus, M] is countable. Its infinitude is clear from
the fact that we can always add another molecule to a configuration. We conclude
that MJ is countably infinite. n

Ml,...,Mne]ML}.

So, even though we are now talking about combinations of molecules, the
structural intuitions we have developed in the study of molecules themselves
still apply. We have not lost our way in the dark forest of combinatorial explosion.
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The atomic nature of force makes for a more concrete approach to the study
of force configurations. There is a natural way to combine connected labeled
graphs into a single labeled graph in a way that satisfies these properties, which
we will refer to as the graph union.

2.4 Definition (Graph Unions)
For force molecules My = (nl,E1,€1 T L) and M, = (nZ,Ez,fz tnp - L),
the graph union My W M, is the force configuration

Mo M, = (1’11+1’12,E1|_|E2,€:TZ1+1’12—>L),
where the edge set

EruE ={(i,j) i, jem}u{(i+n,j+m)|ijen}
is (essentially) the disjoint union of the edge sets E1 and E,, and where

(i) = {4’1(1') ifism

(2(1'—7’[1) lfl > nyp.

The graph union is a way of combining two connected labeled graphs into a
single connected labeled graph. It is viable for configurations:

2.5 Lemma (Graph Unions Configure Molecules)
Graph union satisfies the properties of Primitive 2.1.1 [Proof ]

Observe, however, that the resulting graph (being disconnected) is not itself a
molecule, but rather a configuration of molecules—this is just what we wanted
from the operation W, which we now know works well for the simplest of
configurations, namely the one-molecule configurations. We extend the graph
union to configurations in the following definition.

2.6 Definition (Graph Unions on Configurations)
Given two configurations (] My and |*) My, the graph union [ My @ [t} M, is

UM]UUM2= Lﬂ My H M,.

MieM; MyeM,

This definition is a natural extension of the graph union to the gathering of
configurations; we simply concatenate the concatenated graphs. The properties
established in Lemma 2.5 make this an intuitive and useful operation.

11The proof of Lemma 2.5 is straightforward, but it is also a bit tedious and not very illustrative;
as such, it is our first proof relegated to Appendix A. The reader ought to be able to prove
Lemma 2.5 with a little effort, and indeed it is a good exercise.
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SOLDIER —» XIPHOS

RN

KRANOS THORAX  KNEEMIDES

ASPIS ——> LAMPAS

[~

SOLDIER —— DORY

RN

KRANOS THORAX  KNEEMIDES

Figure 2: A configuration of two hoplites: one with a sword and unadorned shield, the other
with a spear and a decorated shield. The gray dashed rectangles delineate the distinct
hoplites, but this is not part of the configuration proper.

For example, consider two hoplites M; and M,, where the first hoplite carries
a sword (a XIPHOS) and an unadorned shield (an ASPIS), and the second hoplite
carries a spear (a DORY) and a decorated shield (an ASPIS with a LAMPAS):

(1,2), (1,3), (1,SOLDIER), (2,XIPHOS),
M, =|6,1 (1,4), (1,5), +,{ (3,ASPIS), (4, KRANOS),

(1,6) (5, THORAX), (6, KNEEMIDES)

(1,2), (1,3), (1,SOLDIER),  (2,DORY),

(1,4), (1,5), (3,ASPIS), (4,LAMPAS) ,
M2: 7, ’

(1,6), (1,7), (5,KRANOS) , (6, THORAX) ,

(3,4) (7, KNEEMIDES)

The graph union of these two hoplites—M; W M,—is a configuration of force
molecules representing two hoplites, one carrying a sword and an unadorned
shield, and the other carrying a spear and a decorated shield:

) (1, SOLDIER), (2, XIPHOS),
Ei’ig’ gi’gi’ (3,ASPIS), (4, KRANOS) ,
(1’6)’ (7’8)' (5, THORAX) , (6, KNEEMIDES) ,

13, (7’9)’ (7’103 L { (7,SOLDIER), (8,DORY),
(7’113 (7’12)’ (9, ASPIS), (10, LAMPAS),
(7’13)’ (9’10)’ (11, KRANOS) , (12, THORAX) ,

A | (13, KNEEMIDES)

Of course, it is easier to visualize this configuration in a drawing, as in Figure 2.
We see that we have two distinct hoplites, each with their own panoply, but the
graph union has combined them into a single configuration.
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The molecular identities of the hoplites are not, strictly speaking, preserved
in the graph union; if presented data in the form of a configuration, we don’t
necessarily know the molecular identities. That said, it will be useful for us to
recover the molecular identites from a configuration. Accordingly, we should
consider something akin to an inverse for the W operator. This is deconfiguration.

2.7 Primitive (Deconfiguration)

For each force configuration [#;_; M; € MJ, there is a set of deconfigurations

n n
{Tli . L‘*jMi d Mz}

i=1 i=1

Less pedantically, one might write

n
TG (L‘*j Mi) = Mi'
i=1

When useful, we will write

= (er-"/Mn)-

+

In the language of category theory, the W operator is a product and the 1 operator
is its set of projections.12 Simply put, a product is a way of combining objects,
and a projection is a way of decomposing the product into its components. In
this sense, the gathering operator @ is similar to the Cartesian product of sets,
and the deconfiguration operator 7 is similar to the projection maps from the
Cartesian product. But this is not because the action involved is the same; it is
because the structure of the operators is the same with respect to the objects
they act upon. This is why it works best to focus on the abstract properties of the
operators, rather than their concrete actions: the abstract properties are what
allow us to reason about the operators in a general way, and the actions make
computations possible (and examples illustrative).

Fora good start in categorical thinking, accept Brendan Fong and David I. Spivak’s Invitiation
to Applied Category Theory ( ). After, move on to Steve Awodey’s Category Theory ( ) fora
more focused treatment. The standard reference is Saunders Mac Lane’s Categories for the Working
Mathematician ( ), but it is a bit more advanced. Emily Riehl’s titanic Category Theory in Context
(2016) fills in the gap between Awodey and Mac Lane.
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Primitive 2.7 sets a test for the graph union operator: it must be possible to
recover the original molecules from a configuration. We have good news.

2.8 Lemma (Graph Union and Deconfiguration)

For all force configurations ) M € My, there exists a set {m; : [f M — M;}\_, as
in Primitive 2.7. [Proof ]

This proof—again relegated to Appendix A—is a matter of applying a graph
decomposition algorithm to the graph [*) M and then ensuring that the output
of that algorithm comports with a given configuration’s component molecules. "’
This might come across as mere mechanical tedium, but it turns out that
Lemma 2.8 is remarkably powerful. After all, it suggests that any configuration
of force molecules comes equipped with a ready-made process for recovering
the original molecules. Categorically speaking, it suggests that the product-
projection relationship discussed above is healthy and well-behaved. Were we
to assume that all configurations were possible—i.e., that M; was the entire free
monoid of M} under ¥—then we would be able to begin a category from the
molecules alone and assert the existence of all products. This is a very desirable
property, as it entails several others; we have not yet introduced the machinery
required to fully appreciate this, but we will do so in due course.

Summary of Section 2.1. We began Section 2.1 with a set of force molecules
M, itself a subset of the set of all finite connected graphs with labels drawn
from the force elements L. We then introduced the W operator, which allows us
to combine force molecules into force configurations. In the abstract, we require
nothing from the W operator other than that it be associative, commutative, and
unital, which helps it mimic operations like addition, union, and concatenation.
Indeed, the properties of addition and union imbue the graph-theoretic W
operator with the desired properties when it is defined as a simple graph union.
We then extended the W operator to configurations of force molecules, which we
showed to be a countably infinite set M, a subset of the free monoid generated
by M} under w. This construction contains all allowable configurations of force
molecules, and the graph union operator that generates it is well-behaved in
the sense that it is deconfigurable. We will now turn our attention to actions

B particular, the proof outlines a depth-first search algorithm for decomposing a graph into
its maximal connected subgraphs. Other popular approaches include the breadth-first search
algorithm, the Kosaraju-Sharir algorithm, and the Tarjan algorithm. These algorithms are well-
studied and well-understood, and they are all capable of decomposing a graph into its maximal
connected subgraphs. See the proof for references.
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within the set of force configurations, which will require further theoretical
development. Turn the page.
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2.2 The Conversion of Force

Consider the phalanx, which (to repeat) is a particular formation comprised
of hoplites. A mere configuration of hoplites is not a phalanx, as the latter
stipulates a particular arrangement of the former. The whole, so to speak, must
become more than the sum of its parts. In the previous section, we spent
time on what the sum of the parts might be; this quite literally took the form
of a summation-like operator, w. But, it has come time for us to think more
about relationships between the parts, and how they might be transformed into
something new. The following definition is a first step in this direction.

2.9 Primitive (Conversion Morphisms)

For any pair of force configurations ¥} My, |t} M, € MY, there is a set of conversion
morphisms Hom (|4 My, [¥) M,). Either of the two notations

UMl i» L—_FJMZ = f € Hom(UMl,UMz)
mean process f converts configuration (4 M into configuration ¥ M.

By construction:
1. for all [{) M € MJ, we have idy o € Hom (| M, [ M);

2. forall | My, ) M, € MJ, we have X € Hom (|4 M, ) M>); and
3. if (WM, Y M) # (1 My, M), then
Hom(UMl,wml) nHom(UMZ,wmz) = {x}.

The set of all conversion morphisms is written

Hom(]MZ) = U Hom(UMl,LﬂMZ).

(L"j M],H Mz)EME XME

We think of the conversion morphisms as the processes that convert one set
of resources into another; metaphorically, these are the names of the various
chemical reactions that turn component pieces into something new. Though
a mouthful, Primitive 2.9 bakes little structure into the apparatus: we require
only that the ways of converting one collection of molecules into another be set-
containable, that each configuration is equipped with a special process labeled
id}y A, that each pair of configurations contains a special process labeled %, and
that no two different pairs of configurations share a process other than this X
process. These special processes warrant some discussion.
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Maintenance and the Identity Morphism. Each configuration of force molecules
[t} M € M] is equipped with a special process id r« € Hom ([ M, [ M).
In mathematical parlance, this is called the identity morphism for the configura-
tion [+) M. Substantively, this process does nothing, merely “converting” the
configuration into itself:

UMidU—Af Hm.

Stretching our interpretation a bit, we might think of this process as the main-
tenance of a configuration; after all, many force configurations take effort to
maintain. A soldier must be fed, clothed, and trained; a ship must be crewed,
provisioned, and maintained; a fort must be governed, defended, and supplied.
And, it seems that there may be many ways to maintain a configuration, not just
our special process idyj r¢. This is a feature, not a bug; the primitive does not
require that there be only one way to maintain a configuration, only that there
be at least one way. We will see that id|; o is a special maintenance process
attached to the interpretation of maintenance at no cost. This is a key feature of
the identity morphism and the source of its appeal for given applications where
the nuances of maintenance are not of interest.

Impossibility and the Null Morphism. BEach hom set Hom (| My, [t M,) in-
cludes a special process X that converts ¥} M; into [t M,. Rather than a
standard construction like the identity morphism, this process is special to our
theory of force. It is not essential to the theory but rather is an easy shortcut
for the force-maker to know the word “impossible” in a literal sense. If the
force-maker is under the impression that there is no way to convert one con-
figuration into another, we use the X process to indicate this impossibility. In
case Hom (|4 My, 1) M,) = {&}, there is literally no way to convert [} M into
[ M. If instead we had Hom ([} My, [ M») = {¢, R}, then ¢ is a process
that converts Lﬂ M into U M, and X represents ignorance, or rejection, of ¢.

Uniqueness and the Null Intersection. The final property of the conversion
morphisms is that no two different pairs of configurations share a process other
than the X process. This is more of a labeling convention than a substantive
assertion; it is a way of ensuring that the force-maker knows which process
is being referred to when a process is mentioned. Suppose, for example, that
one could f from [ M to [+ M, and also f from [+ M3 to | M. This could
well be the same process, suggesting deep similarities between the odd- and
even-numbered configurations. But it could also be two different processes that
happen to have the same name, introducing unnecessary confusion. Here we
err in the direction that the force-maker should be able to tell which process is
being referred to when a process is mentioned.
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A few examples might help to clarify the concepts introduced in this section.

1. Consider the process of training a hoplite. One key aspect of the philosophy
here is that a hoplite is different than just a soldier and the appropriate
panoply; a hoplite is a soldier trained in a particular way, so that the bonds
between soldier and shield are strong. Recall from Figure 1 that the input
elements for a hoplite molecule include SOLDIER, ASPIS, DORY, and so on.
Gather these into the sequence H, which is the collected raw materials for
a hoplite. However, gathering the materials is not enough; they must be
converted into a hoplite. We therefore introduce the training process f
that converts the raw materials into a hoplite; this yields

L+J 24 - HoPLITE.

This is the process of training a hoplite. There may, of course, be several
such methods of training a hoplite—say, f;, f», and f;—each of which
is a different way of converting the raw materials into a hoplite. Thus,
fi, f2, f> € Hom (|4 H,HOPLITE).

2. Elaborating on this idea, we might think of dedicated training molecules
that serve as catalysts for the training process. These molecules might be
combined with the raw materials to produce a hoplite more quickly or
more effectively—or in any case, via some process other than the standard
training process. To pin the idea down, suppose H is the sequence of
atoms required for a hoplite, and 7 is the sequence of atoms required for
a dedicated training molecule—for lack of a better term, call this a trainer.
We might train the trainer via some process

ks —2, TRAINER,

and then combine the trainer with the raw materials to produce a hoplite
via some process

h
L"j H & TRAINER — HOPLITE W TRAINER.

Process h, where a trainer is present, is different from process f, where a
trainer is not present. Here we have / retain the trainer, as the training of
a hoplite rarely expends the trainer. Just as heat and pressure can catalyze
chemical reactions, so too can trainers catalyze the training of hoplites.
Naturally, one can extend this idea to other contextualizing factors for
training, such as the physical environment, the quality of food and other
resources, and so on. The gathering construction @ allows us to consider
all of these factors together.
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3. One may consider multiple hoplites trained at the same time under the
tutelage of a particular trainer. This is a process of training multiple
hoplites at once, and it is a different process from training each hoplite
individually. We might have a process that looks like

n n
(Lﬂ Lﬂ H) © TRAINER = (Lﬂ HOPLITE) @ TRAINER.
i=1 i=1

This is a different process from training each of the n hoplites individually;
perhaps esprit de corps is developed, or perhaps the trainer is able to focus
on the group as a whole. In such situations, we use the simpler notation

nx W 2 (nx W )
(n x [+)#) © TRAINER S, (1 x HOPLITE) & TRAINER

This is a process of training 7 hoplites at once, akin to making 7 moles of
water from 1 moles of hydrogen and ”/2 moles of oxygen. The X operator
is a shorthand for repeated application of w.

4. This construction allows us to consider preparedness on a larger scale.
Consider the phalanx, a formation of hoplites that is more than the sum
of its parts. In a phalanx formation, hoplites stand shoulder to shoulder,
shields overlapping, so that the formation is more than just a collection
of hoplites. Indeed, one hoplite’s shield protects both himself (from the
front) and the neighbor on his left (from the right), so that the bond set
up by the shield is not just between hoplite and shield, but also between
hoplite and neighbor. The phalanx is a different force molecule from its
underlying collection of hoplites, and so the process by which hoplites
are converted into a phalanx—training, marching orders, and so on—is of
potential interest. In this case, we have the simple process

nx [HH ' 11 x HOPLITE —2% PHALANX,
where 7, trains n hoplites and ¢, trains them to fight as a phalanx. Natu-
rally, this process can be repeated to allow for higher-order constructions
made out of phalanxes; composition will be discussed in due course.

These examples do not exhaust the possibilities of the machine introduced in
this section, but they do give a sense of the kinds of processes that can be
considered. In general, we have developed a theory for the gathering of multiple
force molecules and the conversion of these molecules into new molecules (or
into the same molecules in different configurations). The construction makes
clear the resource-like nature of force, and it allows us to consider the ways in
which force is gathered and converted.
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The final example given above points toward an important aspect of con-
version processes: they can be composed. Just as one can convert hydrogen and
oxygen into water and then convert water into steam, so too can one convert
materials into hoplites and then convert hoplites into phalanxes. This is a key
aspect of the conversion processes, formalized as follows.

2.10 Primitive (Composition of Conversion Morphisms)

For every process f € Hom ([ My, [t} M,) and g € Hom ([t} My, |+ M3), there
is aprocess g o f € Hom (|4} My, [+) M3). This process is the composition of f and
g. The composition satisfies the following properties for all force configurations:

1. Associativity: for all |+ M, N H M, 4, 4 M3 R [+ My, we have
ho(gof)=(hog)ef;

2. Identity: for all f € Hom (|4 My, ¢} M,), we have
foidym, =f =idym, o f; and

3. the Dominance of Impossibility: for all f € Hom ([{) M} ), we have

foxX=X=Xof.

The composition of conversion morphisms is a way of chaining together con-
version processes. Consider again the example of training hoplites to fight as a
phalanx, encoded as
Tn (;bn
1 |+)H —5 n X HOPLITE —> PHALANX.
Primitive 2.10 allows us to consider the process of training hoplites to fight as a
phalanx as a single process, ¢, © T,, which we could encode:

n°Tn
n x H 21 7% PHALANX.

There may be (many) other processes that convert n hoplites into a phalanx; the
primitive does not require that there be only one such process. However, it does
require that there is such a process and that this process can be composed from
the training process and the phalanx formation process. We retain wide latitude
about what sorts of processes we are composing and how they are composed,
but we have a clear way of reasoning about multi-step processes. All told, the
process of composition and the properties of Associativity and Identity comprise
the core of categorical reasoning: what makes a structure what it is is how its
processes can be composed and how they interact with the identity processes.
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As we are working with a categorical theory, we can represent the force con-
figurations and conversion morphisms in so-called categorical diagrams. Indeed,
the examples above are written in a way that mimics the categorical diagrams, but
these diagrams can be more general than the examples suggest. An example will
help: suppose we had three force configurations *} My, [t} M,, and [ M3, and
suppose further that we had conversion morphisms f € Hom ([ My, [t M>),
¢ € Hom (Y M, | M3), and h € Hom (Y My, [t} M3). By composition,
we also have the morphism ¢ o f € Hom (|4 My, [t/ M3). Each hom set
includes X, the null morphism, and each configuration includes id( A4, the
identity morphism. For sake of variety, suppose also that there is some
k € Hom (| My, [¥) M;). We can represent these processes as follows:

idpy aq f idy a,
M = ) M

M

O

idy M,

Figure 3: Sample categorical diagram of force configurations and conversion morphisms. For
clarity, X endomorphisms are omitted from the diagram.

This diagram conveys all structural information about the force configurations
and the conversion morphisms. The identity morphisms (and k) are self-directed
loops staying at the same c:onﬁguration,14 and the conversion morphisms are
directed arrows moving from one configuration to another. The f and g arrows
compel the existence of the g o f arrow.

14Strictly speaking, each configuration ought to have a self-directed loop for the null morphism
X as well, but these are omitted for clarity.
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Just as in Section 2.1, we turn our attention from abstract details to the
concrete world of the atomic theory of force—i.e., to configurations of force
molecules, themselves connected graphs of atoms with labels drawn from the
set L. We now ask whether there are simple, graph-theoretic operations for
conversion morphisms between force configurations.

To fix intuitions, consider again the two hoplites of Figure 2. The two hoplites

ASPIS ASPIS — LAMPAS
| 1
SOLDIER —» XIPHOS SOLDIER ———» DORY
KRANOS THORAX KNEEMIDES KRANOS THORAX KNEEMIDES
ASPIS \f(b ASPIS — LAMPAS
SOLDIER —» XIPHOS SOLDIER ———» DORY
VAN AN
KRANOS THORAX KNEEMIDES KRANOS THORAX KNEEMIDES

Figure 4: Fashioning a phalanx from two hoplites. The top panel is My & M, where M is the
hoplite on the left and M, is the hoplite on the right. The bottom panel is M3, the
phalanx formed from the two hoplites. We have ¢ € Hom (M W My, M3).

can be combined into a single force configuration, M; & M;, which is the raw
material for a phalanx. This is the top panel of Figure 4: two distinct subgraphs
in a disconnected union. The phalanx is a different force configuration, and
though one could imagine any number of ways of representing the differences
between the two hoplites and the phalanx with respect to the graphs, but it’s
simple enough to say that in our new phalanx, the hoplite on the right protects
the hoplite on the left. This is the state of affairs depicted in the bottom panel
of Figure 4, where we have added one edge between the two hoplites. This
edge—this mere mathematical plaything—represents the bond between the two
hoplites, the essence of the phalanx.
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The example suggests that reasonably simple graph-theoretic operations can
be used to convey the changing of one force configuration into another. Here is
another. Just as we added edges to graphs in the previous example, we might
also add vertices to the graph, say to demonstrate the training of a soldier in the
use of a particular piece of equipment. Indeed, suppose we wanted to represent
the training of a soldier into a full-fledged hoplite. Our initial force configuration
might be a single vertex labeled SOLDIER, and the final force configuration might
be a hoplite as we’ve been discussing. In this case, we need to add vertices

ASPIS

A

SOLDIER

~

SOLDIER —» XIPHOS

g

KRANOS  THORAX KNEEMIDES

Figure 5: Training a soldier into a hoplite. The left panel is M, the molecule with a single
atom of element SOLDIER. The right panel is M,, the molecule with a full hoplite
configuration. We have ¢ € Hom (My, M).

for the various pieces in a hoplite’s panoply and edges to connect them to the
soldier, representing the training process. Thus, we need to add edges as in
the previous example, but in tandem we need to add vertices. Again, this is a
reasonably simple graph-theoretic operation, and it is enough to represent both
the equipping (adding vertices) and the training (adding edges) of a soldier into
a hopli’ce.15 These simple tools can move mountains, or at least hoplites.

It should be noted that adding vertices does not require us to add edges; the output need
not be connected, as we are linking configurations to configurations rather than molecules to
molecules. It just so happens that this simple example is molecule-to-molecule. The reader is
encouraged to draw out the version of hoplite training that includes a non-connected TRAINER
as a catalyst, connected neither to the soldier nor to any of the hoplite’s equipment. Literally,
you'll just add a vertex labeled TRAINER to each panel of Figure 5, making sure not to connect it
to anything. You might add a subscript to ¢ to drive home the point that these are two distinct
training processes: one with a trainer and one do-it-yourself. Your humble author worries that
he’s already overtaxed the reader’s patience with the diagrams in this section, so he refrains from
adding yet another. Plus now the manuscript is interactive.
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The previous two examples demonstrated how we could move from one
configuration to another by adding edges and vertices; it goes nearly without
saying that we could have done the same in reverse by deleting edges and
vertices. For example, it was not all that practical for hoplites to remain forever
fixed in a phalanx. Just as they could be joined, so too could they be separated.16
Likewise, a hoplite could be stripped of his equipment as part of a re-equipping
process.17 The point is that the addition and deletion of edges and vertices are
simple, graph-theoretic operations that can be used to represent the conversion
of one force configuration into another. Let us now encode these four basic
operations as elementary edits for force configurations.

2.11 Definition (Elementary Edits)
For force configurations
*
UMO = (nOIEOIEO : @ - L) € ML/
we define four elementary edits:

1. Vertex Addition: set ny = ng + 1, Ey = Eg, and €,(i) = & (i) for all i € ny,
and €1(ny) = €,y for some €,e, € L;

2. Vertex Deletion: set ny = ng — 1, and for the deleted k € ng, set E; =

Eo\ {(k,j) | j € no}and t, = IPRYPY

3. Edge Addition: set E; = Eq U {(i,j)}for some i, € ng, and leave ny = 1o
and €, = {y unchanged; and

4. Edge Deletion: set E; = Eq \ {(i,])} for some i, ] € ny, and leave 1,
and ¢, = {y unchanged.

no

'®In this sense, the morphism sending hoplites to a phalanx can represent training, but it just as
easily could represent the formation of a phalanx from a group of hoplites. We will soon enough
think about how to use such an interpretation to encode the readiness of a force.

7 This was certainly the case with the Zulu Impi warrior. As part of a re-outfitting of his forces,
the great leader Shaka kaSenzangakhona forced his warriors to discard their sandals—ISICOCO—
and to go barefoot. He switched out their long spears—UMKHONTO, effective for defensive fighting,
but useless for the aggressive tactics he had in mind—for shorter stabbing spears called IKLWA.
(The latter was named for the sound it made when it was pulled from the body of an enemy; upon
removing his blade from the enemy, Shaka would shout “I have eaten!”) The reader is encouraged
to take long visits with Donald R. Morris’s The Washing of the Spears ( ) and John Laband’s The
Rise and Fall of the Zulu Nation ( ).
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These elementary edits are the building blocks for the conversion of force
configurations. They allow us to render configurations more complicated or
simpler by adding or deleting vertices or edges.
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Obviously—any yet still remarkably!—these edits allow us to convert any
configuration into another, so long as we are sufficiently patient. The following
is likely obvious, but it is important enough to be stated explicitly.

2.12 Lemma (Elementary Edits Suffice for Conversion)

For any two force configurations [*) My and |+) M, there exists a sequence of elementary
edits converting |+ My into ¥} M,.

Proof. We need not identify an efficient sequence of elementary edits, so let us
keep matters simple by breaking the job into two simple parts.

Part 1: converting ¥ M into O, by deleting all edges, then all vertices. The details
are left to the reader, but the idea is simple: delete edges until E = @, then delete
vertices until 7 = 0. This is a sequence of elementary edits that converts [+ M,
into Oy, -

4

Part 2: converting Oy, into [+ M, by adding all vertices, then all edges. The details
are again left to the reader, but the idea is the same in reverse: add vertices,
each time assigning e, = € (i) for i € n,, then add edges until E = E;. The

resulting graph is [+ M,.

a4

Conclusion. We may concatenate these two sequences of elementary edits to
obtain a sequence of elementary edits converting [+ M; into ¥ M,. ]

This lemma is a powerful result, as it shows that the elementary edits are suffi-
cient to convert any configuration into any other configuration via a sequence
of elementary edits. Indeed, for any two configurations there are many such
sequences, and the choice of sequence may depend on the context of the con-
version.'® The reader is encouraged to identify multiple sequences of edits for
the conversion morphism of Figure 5. Even more enterprising readers should
construct other edits out of the elementary edits—for example, what sequence
of elementary edits would be equivalent to simply relabeling one, and only one,
vertex in a configuration? (Hint: the sequence’s complexity depends on how
connected the vertex is to the rest of the configuration.)

18Strictly speaking, there are infintely many sequences of elementary edits that convert one
molecule into another, since any change we make in one iteration can be undone in the next. Thus,
we could toggle back and forth between two molecules for all eternity, and each length-of-toggle
would represent a distinct sequence of elementary edits. This is a bit of a silly point, but it is
technically correct; we will ignore it for the rest of the manuscript. After all, we will eventually be
looking for cost-minimizing sequences of elementary edits, and toggling back and forth between
two molecules is not cost-minimizing. We required only that each hom set is a set, not that it is
small. And indeed, even with these silly sequences, the set of sequences is still a set.
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We can now gather all of the above into a single, coherent package.

2.13 Construction (The Category of Force Configurations)

We construct the category of force configurations Configy,» as follows:
1. the objects are the force configurations M ;
the morphisms are the sequences of elementary edits, plus X;

the identity morphisms are the O-sequences of edits; and

N

composition of morphisms is concatenation of sequences of elementary edits, along
with the special case of X under the Dominance of Impossibility.

We observe that the concatenation of sequences of elementary edits is itself a sequence of
elementary edits, and so the composition of morphisms is a morphism. Further, it clearly
satisfies the associative property, and the identity morphisms are clearly identities.

This construction provides a formal framework for the conversion of force
configurations. It provides us with the structure we need to further study force
configurations and their conversions, particularly from a political-economic
perspective when we introduce costs.

We have used the atomic theory of force to imbue force configurations with
a rich structure, but it is worth noting that this structure can be forgotten when
its details obfuscate the broader picture. It might not be obvious, but in the
previous two subsections we have developed a theory of force configurations
that is quite general—more general than one that relies on the atomic theory
of force and graph-theoretic encodings. The atomic theory of force is a useful
tool for understanding the structure of force configurations, but it is not the only
tool, and it is hoped that future work will explore other ways of understanding
the structure of force configurations within this general framework.

Summary of Section 2.2. In this section, we extended our theory of force
configurations to consider the processes by which one configuration is converted
into another. We introduced the notion of a conversion morphism, which in the
abstract is simply an arrow between two force configurations. In the context of
the atomic theory of force, we found that the conversion morphisms could be
represented as sequences of elementary edits, which are simple graph-theoretic
operations. We showed that these elementary edits are sufficient to convert any
force configuration into any other force configuration, and we used this result to
construct the category of force configurations. This category provides a formal
structure for the conversion of force configurations, and it will be the foundation
for our study of the costs of conversion in coming sections.

38



2.3 The Costs of Conversion

To this point, we have developed a theory of force configurations (themselves
composed of force molecules, themselves composed of the elements of force)
and the conversions between them. The theory of conversions was introduced
in a general, abstract way that (it turns out) was amenable to being rendered
concrete in terms of graphs. We continue in this style as we turn attention to
the costs of conversion between force configurations, starting from abstract first
principles before moving to the concrete world of connected labeled graphs.

In the general setting we have developed, conversion processes are simply
arrows sending one force configuration to another. If our task is to assign each
of these arrows some datum called a “cost,” we must first understand what the
structure of that datum is. Figuring out what sort of datum to attach to a given
concept is a famously difficult problem. For example, in classical physics the
concept of time is attached to the real numbers R and the concept of space to the
Euclidean space R, Irrespective of the units we use to navigate these spaces,
the underlying structure is the same. So deeply-ingrained is this structure
that it is difficult to imagine a different one, which is one reason why so many
people find modern physics so difficult to understand. There, time and space
are no longer real numbers and Euclidean spaces, but rather parts of a four-
dimensional manifold called spacetime equipped with some additional features.
The structure of spacetime is different from that of time and space; the machines
used to measure spacetime are calibrated differently from those used to measure
time and space.19 And we must ask ourselves here: how do we calibrate the
machine measuring the costs of conversion between force configurations?

Your humble author does not want to make promises he cannot keep, so he
will not promise to deliver an actual calibration capable of handling soldiers-to-
hoplites as capably as uranium-to-warheads. The goal here is not to provide an
actual calibration so much as it is to announce what properties such a calibration
would have to possess to (1) meaningingfully encode the costs of conversion
given the ways we talk about such things; and (2) be amenable to the abstract
machinery we have developed. What makes for a good measure of cost is a
question for the philosophers, but what makes for a good measure of cost in our
theory is a question for us. Indeed, it is a deep responsibility, given the generality
for which we strive, to ensure that the structures we introduce are capable of
handling the wide variety of costs one might encounter.

YThe example might be underwhelming given that the structure of spacetime is still quite
similar to that of time and space, but the point is that the structure of the datum attached to a
concept is not necessarily the same as the structure of the concept itself. One can consider other
foundational aspects like charge, spin, or color, none of which admit real-number structure.
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How do we begin to understand the structure of the costs of conversion? We
first assert the existence of a set of labels used to measure costs, which alerts us
to what sort of data we are dealing with.

2.14 Primitive (Cost Labels)

There is a nonempty set & containing the cost labels.

This primitive is the most basic one we can introduce, as it simply asserts
the existence of a set of labels used to measure the costs of conversion. It is,
to this point, an empty canvas awaiting further details. At present, we have
asserted nothing other than the fact that the things we used to measure costs
are set-containable. The set might be very simple, like {Lo, Hi}, or some larger
finite set n = {1,2,...,n}, or it might be more complex, like the real numbers
R. It might be unidimensional, as in these previous examples, or it might be
multidimensional, as in the case of vectors or tensors. It might come equipped
with particular properties like order, distance, or topology, or it might be a more
abstract structure like a group or a ring. It might be a pointed set, containing
at least one element distinguished from the others, or it might be a monoid,
containing an operation that combines elements in a particular way. It might
combine some or all of these properties into something quite complicated and
difficult to understand, or it might distill them into something exquisitely simple.
The set of cost labels is a blank slate, and we will fill it in as we go along.
Its job is to calibrate cost measurement.

2.15 Primitive (The Cost Map)

There is a function cost : Hom (M] ) — Z assigning a cost to each process.

This primitive asserts the existence of a function that assigns a cost to each
conversion process. But in a deeper sense, it asserts that the cost labels are the
things we speak of when we speak of costs. After all, cost and E go hand in
hand: what cost is is the function that takes a conversion process and assigns it
a cost label from &, and what E is is the set of things targeted by the function
cost.”’ This is what is meant by “calibrating the machine:” the function cost
is the machine, and ZE is the calibration. In studying = we study the way
costs are understood and reasoned about, interpreted and manipulated. As
our understanding of cost evolves in time, space, and context, so too must we
evolve our understanding of =—and as such, we must assert what properties =
should possess to do its job well. We do so in the next few pages.

“This is one reason category theorists are quite doctrinaire about the sources and targets of
morphisms: “the same” function defined on different sets is not the same function.
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We need some way to compare costs, and the most common parlance used
in such comparisons seems to involve words like “more” and “less.” As such,
& ought to come equipped with some way to order its elements. We introduce
this structure as follows.

2.16 Primitive (Order Structure on Cost Labels)

There is a preorder = on the set of cost labels E; we have

E12 & ~»  “&isatleast as great as &p.”

Three matters of notation:

1. we may write &y > &, just in case &y = &y and not &y = &y;
2. we may write & € &, just in case &, = &q; and

3. we may write & = &, just in case &y = &y and &y = &;.

This is a very general assertion, as it does not specify how the costs are ordered,
only that they are ordered. We require only that the order satisfies:

1. Reflexivity: forall £ € E, £ = &, so any cost is at least as great as itself; and

2. Transitivity: for all &, &y, 83 € B, if & = &y and &, = &3, then & = &3, 50
that the costs are ordered in a consistent way:.

We do not require completeness, which is to say that we do not require that any
two cost labels are comparable. This is a deliberate choice, as we do not want to
impose any more structure on the cost labels than is strictly necessary. It could
well be that some costs are not comparable, and we want our structure to be able
to handle that possibility. The atomic structure will be of some use here later.

The preorder 2 reflects the way the force-maker thinks about costs in that
it tells us which she deems more or less expensive. There are wide varieties
in how she might do so—for example, she might say all costs are the same, or
that all distince costs are incomparable, or that there is some strict ordering of
costs. Though the origins of her preferences here lie beyond our scope, we at
least store all the possibilities in a set.

2.17 Definition (Set of All Cost Labels)

The set of all preorders on 2 is denoted Pre(E).

Pre(Z) is a well-studied construction in set theory, and it possesses several
remarkable properties. We will discuss some of them at appropriate moments
in the text, but for now we are content to have a set of all preorders on Z.
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Next, we need to combine costs in some way. In light of sequential processes
encoded by composed conversion morphisms, it is only natural to consider the
sum of costs, which we introduce as follows.

2.18 Primitive (Sum of Costs)

There is a binary operation @ : E X E — E representing the sum of costs. It satisfies:
1. Monotonicity: for all &1, &5, 51, 52 € K,
G128 ad 28 — Le&LzE el
2. Unitality: there is a void cost Oz € E such that forall £ € E,
Eolzg=¢(=0=z0¢;
3. Associativity: forall &1,&,,83 € B,
(G1@&) @& =810 (& ®&3);
4. Commutativity: forall &1,& € B,
&1 & =8 @ &y; and
5. Closedness: forall &1, &, € B, there is an element &1 — &, € E satisfying
(G@&)2& = &2 (& &)

call this the hom-element of &1 and &,.

This primitive asserts that the cost labels can be combined in some way, namely
by summing them. As such, the operation & must satisfy a number of properties
to ensure that the costs can be combined in a consistent way, and these properties
are similar to those we ask of addition of real numbers. These are the first four
properties of the operation ®. Closedness might seem like an odd property, but
it helps us to define the “difference” of two costs. Roughly speaking, {1 — &, is
the cost that, when added to &, yields &,. From here, difference might look like:

0= if & 2 &4,

&y — &1 otherwise.

51952:{

Since 2 is reflexive, we have £ & & = 0z, which confirms our intuitions of
subtraction. This will prove useful when we attempt to pin down a metric
structure on force configurations, as it will allow us to subtract away unnecessary
details to get at the heart of the matter.
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We now turn our attention to the existence of special cost labels with respect
to the order structure. We have two special needs for our application:

1. we need it to be the case that any subset of = has a greatest lower bound,
so that the force-maker can always conceive of some theoretical limiting
minimum cost when presented with a set of costs; and

2. we need some special element representing the infinite cost, which we
will attach to the impossible process X.

Let us encode these needs in the following primitive.

2.19 Primitive (Order-Special Cost Labels)

For any set of cost labels X € E, there exists an element \/ X € E satisfying

Xz \/xforallx € X, and
\/x=2y forally e X suchthatx >y forall x € X.

Put differently, we say that (E, =) has all joilrls.21 We set \/ E = 0z.

Moreover, there exists a unique element 0o € E satisfying 00 = & forall £ € E.

This primitive asserts that the cost labels have all joins, which is to say that any
subset of cost labels has a greatest lower bound. Had we assumed completeness
of 2, then such an assumption would not be necessary, as the greatest lower
bound of any subset would be the infimum of that subset. In the absence of such
luxuries, we simply assert that the greatest lower bound exists. We align the
order and algebraic structures by sending the void cost Oz to the bottom of the
order structure, so that £ = O for all £ € E; there may be other costs with this
property, but the void cost is order-isomorphic with any such cost. This adds
the interpretation that “costs are non-negative,” which is a common property
of reasoning in terms of costs. The infinite cost is strictly at the top of the order
structure, as 00 > & forall £ € E other than oo itself. Just as we ignored different
sorts of impossibility of conversion morphisms—all impossible processes being
the same in the abstract—we ignore different sorts of infinite costs. Future work
might unpack these different sorts, but for now we are content to have a single

21Ordinarily, greatest lower bounds are thought of as meets rather than joins; this is the case
when < is the primitive, rather than =. Here we use = to maintain similarity with existing theory
on enriched metric spaces, namely that of ( ). Having all joins also helps us to
properly define the quantale that will ultimately calibrate the costs of conversion.
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infinite cost 0o attached to the impossible process X. Theoretically, this seems
a small price to pay for convenient interpretations and a natural path toward a
metric structure on force configurations.
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The infinite cost plays a special role in our substantive story, as it represents
the cost of the impossible process X. We observe that it dominates summation,
as “regular” infinity does:

2.20 Lemma (Impossibility Absorbs)

For all cost labels & € B, we have £ & co = 00 = 00 @ €&.

Proof. Choose and fix any £ € E. We will show that £ & oo = E for all E € 5;
since 00 is the unique cost label with this property, the argument will suffice. By
definition, £ = 0z and oo 2 S ; Monotonicity of @ delivers £ ® o0 = 0z & S = E,
where the final identity obtains from Unitality of ®. We infer £ & oo = o0;
Commutativity of @ entails £ ® 0o = 00 & & = 00, too, so we are done. [ ]

Thus, o0 is the absorbing element of the operation &.

In the spirit of the theory described to this point, we set the cost of the
impossible process X to be infinite and the cost of the identity process to be void,
which further links the order and algebraic structures to the abstract theory.
Further, we want the addition operation to work smoothly in tandem with
composite processes, suggesting that we should pin down how & and o interact.
We make our special assumptions now.

2.21 Assumption (Special Features)
The map cost : Hom (M; ) — Z satisfies:
1. Costless Identity: for all ) M € M7, we have cost (idw M) = Ocost;

2. Impossibility: we have cost (X) = 0o, and

3. Composability: for all [+) M, N H M, N [+ M3, we have
cost (g o f) = cost(f) @ cost(g).

Costless Identity does not mean that all maintenance processes are costless—only
that the special process id|j A4 is costless. Put differently, there may be some force
configuration (4 M and some maintenance process f € Hom (4 M, [+ M)
such that cost(f) # @Cost.zz Such a process points to costly maintenance, a
common feature of the world we inhabit and the tools we use in it. As for
Composability, it is a natural assumption to make, as it ensures that the costs of
composite processes are the sums of the costs of the component processes. This
offers ease of computation and interpretation.

ZIndeed, the impossible process is technically a member of Hom (|t M, [} M), so it is a
counterexample to the claim that all maintenance processes are costless.
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Thing General Costy Bool

Labels =) Rsp = Rso U {0} B = {FALSE, TRUE}
Order = ZR <p (see text)
Addition < + A
Additive Identity Og 0 TRUE
Hom Object x -y max{0,y —x} x = y (IF-THEN)
Join VX inf X A\ X (AND)
Infinite Cost 00 00 FALSE

Table 1: Lawvere’s ( ) and the Boolean structures.

Though we have taken pains to keep things quite general, two special cases
.. 3
of the cost labels are worth mentioning.

1. The first is due to category theorist F. William Lawvere, who used the
extended non-negative real numbers ﬁ;o = R,qU{00} to provide a bridge
calibration between metric spaces and enriched categories. It allows us
to assign a single non-negative real number (or 00) to each conversion
process, mimicking the way we assign a single real number to each point
in a metric space. Indeed, Lawvere’s insight was that the structure of the
cost labels could be used to calibrate the cost-measurement device, which
is the essential idea we seek to generalize here.

2. Thesecond is the Boolean structure, which is a special case of the cost labels
where the only costs are FALSE and TRUE; its orderis simply FALSE < TRUE,
plus the usual reflexive statements. Whereas the Lawvere structure allows
us to think about costs quite naturally, the Boolean structure is about
possibilities; in particular, a process has cost TRUE if it is possible and
FALSE if it is impossible. Whereas one combines costs by adding them,
one checks possibility paths by taking logical conjunctions—thus, and
perhaps unexpectedly, + and A play the same role in these two structures.

Even in examining two simple cases, we see that the cost calibration exercise is
crucial in pinning down the nature of the force-maker’s reasoning about costs.
There are many such structures, each with its own properties and interpretations,
and we have only scratched the surface of what is possible. In asserting & and
its properties in the abstract, we assert only that the force-maker abides by some
set of rules when thinking about costs; save for those, the force-maker is free to
think about costs in any way she pleases.

SThis paragraph draws again from the heavenly ( )-
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Yet again, the atomic theory of force provides a concrete way to understand
the abstract structure of cost measurement. Recall that, in the category of
force configurations Config; , the objects are force configurations (which are a
particular kind of graph) and the morphisms are conversion processes (which
are a particular kind of graph morphism, namely sequences of elementary edits).
We can think of Config; as a subcategory of a category of graphs DirGraph,,
where the objects are graphs labeled from L and the morphisms are finite
sequences of elementary edits.”* Thus, DirGraph; includes all intermediate
graphs as objects, whereas Config; includes only those graphs that are viable
configurations over viable molecules. We introduce DirGraph; formally as
follows.

2.22 Definition (The Category of Graphs)
The category of graphs DirGraph has:

1. Objects the directed graphs with vertices labeled from L;
2. Elementary morphisms the elementary edits, where for each graph G we have
0Vay ovdg
Go — Ga, Go — Gﬁ,
0€ay oeds
Go— Gy, Gop— Gg,
representing the addition and deletion of vertices and edges in Gy,
3. Composition the concatenation of elementary edits; and

4. Identity the 0-sequence of elementary morphisms.

Composition and identity evidently satisfy the usual properties.

Note that, because each pair of elementarily-adjacent graphs is linked via a
distinct edit morphism, the morphisms defined by the graphs they link. In other
words, not all vertex insertions are the same, nor are all edge deletions, and
so on. We will work within the category of graphs DirGraph; to understand
the structure of cost measurement; we then can apply our understanding to
the subcategory of force configurations Config;. This is a common strategy

*This is why DirGraph; is “a” category of graphs, rather than “the” category of graphs. “The”
category of graphs typically takes (undirected) graphs for objects and graph homomorphisms for
morphisms, which are a different sort of thing. There are stories to tell with this category, but
they are not the stories we are telling at present.
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in category theory, where one works in a larger category to understand the
structure of a smaller one. The larger category provides a broader context in
which to understand the smaller one, and the smaller one provides a concrete
example of the abstract structures in the larger one.
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Now that we have a concrete category in which to work, we can define the
cost calibration device. In essence, we do little more than assign each elementary
edit morphism a cost label, and then extend this assignment to all morphisms
in the category. We define the cost calibration device formally as follows.

2.23 Construction (Cost Functor)

The cost functor is a functor cost : DirGraph; — E that assigns to each elementary
edit morphism a cost label. In other words, for all elementary edits

Go L Gy,

we have cost(f) € E. Composition is additive: if an edit morphism is written as a
sequence of elementary edits f = f, o «+- o fy, then

cost(f) = E_Bcost (f;)-

Finally, we have cost(idg) = Oz for all graphs G.

We have now attached each elementary edit morphism in DirGraph; to a cost
label, and we have extended this assignment to all morphisms in the category
by way of @, the means by which we combine costs. Since each elementary edit
is defined uniquely by the graphs it links, we now have the possibility of distinct
costs for distinct processes.

Suppose, for example, that we had a soldier and intended to train him in the
use of a sword and shield. There are several ways to do this; here are two:

1. we could equip him with a sword, train him in its use, then equip him
with a shield and train him in its use; or

2. we could equip him with a shield and sword, then train him in the use of
the shield, then train him in the use of the sword.

Other routes are possible, but these two are illustrative. The first case involves
a sequence of elementary edits: vertex addition (for the sword), edge addition
(for the training), vertex addition (for the shield), and edge addition (for the
training). The second case involves a different sequence of elementary edits:
two rounds of vertex addition (one for the sword, one for the shield) and two
rounds of edge addition (one for the sword training, one for the shield training).
Though we arrive at the same place in the end, the costs of the two routes may
differ: after all, it might be harder to train a soldier in use of a sword when he’s
holding a shield, or it might be easier to train him in the use of a shield when
he’s already trained in the use of a sword. Construction 2.23 allows for such
distinctions, making for superb flexibility in the force-maker’s art.
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G | SHIELD <— SOLDIER — SWORD G
| |
1 L3€al R3€a1 1
I I
I I
I I
l l
Grs | SHIELD  SOLDIER —> SWORD SHIELD <— SOLDIER  SWORD , Ggs
| |
1 1
| L2€aL3 R2VaR3 |
l l
| |
Gro | SHIELD ~ SOLDIER  SWORD SHIELD <— SOLDIER ' Gro
| |
| |
1 r1vars R1€3R2 1
I I
l l
Gr1 | SOLDIER  SWORD SHIELD  SOLDIER . Gri
| |
| |
| |
l l
| 0vaL1 0VaRr1 |
I I
GO ! SOLDIER ! Go
| |

Figure 6: Two paths to training a soldier in the use of a sword and shield. Only the elementary
edits are shown, and identity morphisms are omitted for clarity.

Figure 6 depicts these two processes in the category of graphs DirGraph; .
The two processes share common endpoints, but their intermediate steps differ:
one involves all equipping then all training, whereas the other involves equipping
and training in parallel. The costs of these two processes are not necessarily the
same: the left path incurs cost

cost (gvary) @ cost (p1vary) ® cost (;pear3) @ cost (jzeayr),
whereas the right path incurs cost
cost (gvagy) @ cost (gieary) ® cost (grpvagrs) @ cost (grzeay) .

The force-maker can now compare costs to decide which process is more efficient,
or she can use the costs to guide her in developing new processes. The properties
of the cost labels and the cost calibration device might allow her to manipulate
these expressions for further simplification, but for now it suffices to observe

potential cost heterogeneity across paths heading to the same destination.”

PThis is a good moment to note that the larger category DirGraph; is a category of graphs,
not a category of force configurations. As such, it is guaranteed to contain all these intermediate
graphs, which are not necessarily viable force configurations.
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The lattice structure we imposed upon E in Primitive 2.19 facilitates cost-
based reasoning by providing a lower bound for any subset of cost labels; in
particular, this can help the force-maker navigate the myriad training routes
from one configuration to another. For two graphs Gy and G; in DirGraph;, let
Hom (G, G1) denote the set of all morphisms from Gy to G;. Then the image
of cost on Hom (Gy, G1) is a subset of B, and as such it has a greatest lower
bound—i.e., we can approximate the cheapest way to convert G, into G; by

\/ cost (Hom (G, G1)).

There are not necessarily any morphisms in Hom (G, G; ) that achieve this cost,
but the force-maker can use this lower bound to guide her in developing new
processes. Were we to equip = with further structure—say, density or a metric—
then the force-maker could use these tools to further refine her reasoning about

costs, and indeed she might be able to achieve the cost of the cheapest process

exactly. We will leave these refinements for future work, content for now to have

provided the force-maker with a tool to reason about costs in a structured way.26

We will see that the next development in the theory provides an alternative way
to reason about costs, one that is more closely tied to the compositional nature of
the force configurations themselves, not to mention a weak notion of rationality
on the part of the force-maker.

Summary of Section 2.3. In this subsection, we introduced the cost labels =
and discussed what structure it must possess to calibrate the costs of conversion
processes. These properties include a weak order structure, a binary operation
denoting the combination of costs, and two special cost labels: the void cost
0z and the infinite cost co. Most importantly, = is the appropriate target for
the cost measurement device, which assigns to each conversion process a cost
label. In the context of the atomic theory of force, & provides the codomain for
elementary edit cost maps in the category of graphs DirGraph; , which makes
cost measurement a rather straightforward affair.

26Framkly, your humble author is skeptical about the tenability of an approach based on choosing
the cheapest path between any two force configurations. For starters, it is not obvious that this
sort of local cost-minimization is on the mind of real-world force-makers, who often engage in
locally-costly processes to achieve globally-optimal results. Moreover, this implies a strong form
of rationality on the part of the force-maker, who must always choose the cheapest path across
a wide variety of training and production processes. This seems a tall order, and it is not clear
that the force-maker is up to the task; this is precisely why we equip her with a weaker form of
rationality in the next section. This decision has been quite difficult for your humble author, who
has spent many hours pondering the nature of the force-maker’s rationality. The tack taken in
the next section is the result of much thought and reflection, and it is hoped that the reader will
find it as compelling as your humble author does. But, as always, tastes vary on such matters.
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2.4 The First Rationality

We have developed a theory wherein we can gather molecules into configurations
and convert these configurations into new configurations via costly processes.
These processes are taken to be just as primitive as the configurations themselves,
arriving from the sky as a gift from the gods. There are no guarantees that a
given force-maker knows how to turn three hundred hopelites into a phalanx,
nor now to turn enriched uranium into a nuclear weapon. Put differently, we
think of each Hom (+) M, [¥) M>) as a concrete set of real-world possibilities,
rather than a force-maker’s current knowledge or practices. This helps stiff-arm
questions the reader might have had along the way, such as “how does the force-
maker—or the author—know how to convert one configuration into another?”
The answer is simple: she doesn’t, and neither does your humble author.

But the force-maker is not without her wits. Though she is not a master
engineer, she is capable of reasoning about costs and making decisions accord-
ingly. By now we know that she can compare various costs, compute their sums,
and consider the residual between two costs. She has a notion of impossibility,
which she can use to rule out certain processes, and she has a notion of identity,
which she can use to maintain the status quo. She can reason about costs in a
structured way, and she can use this reasoning to guide her in developing new
processes. And yet, in the light of the humiliating complexity of the problem
at hand, it would appear unwise to expect her to behave as a perfectly rational
agent (and the same goes for your humble author, who clearly is not one, either).

We will now introduce a new primitive, the choice schedule, via which the
force-maker selects a process from each set of possibilities.

2.24 Primitive (Choice Schedule)

There is a selection of processes

CS : Mj x M — Hom (M]),
(Lﬂ Ml,Lﬂj\/b) — CS(U Ml,UMz) € Hom(t‘j Ml,L‘_"JMz),

representing the force-maker’s choice of a process from each set of possibilities.

The choice schedule is the force-maker’s tool for selecting a process from each
set of possibilities. We do not specify how the force-maker makes her selections,
only that she can make them. Indeed, nothing precludes the force-maker from
shirking her duties, setting CS (|t} My, [t} M,) = X forall pairs of configurations
HMy, M, e M;, declaring all conversions impossible.
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Lurking behind the simple definition in Primitive 2.24 lies a deep assumption
worth unpacking. We have asserted that she is capable of choosing a process
from each set of possibilities, but we have not said how she makes these choices.
This is intentional, as it would take more pages than we have to describe how one
might choose training processes for hoplites, enrichment processes for uranium,
and so on. But precisely because of this lack of structure, it is not immediately
obvious just what sort of unifying principle exists to allow us to define the choice
schedule in the first place.

Now, one thing all processes have in common is that they are sent to the cost
structure E via the cost measurement functor cost. It is tempting to use this
structure to define the choice schedule, using the unified space of costs. And
indeed, this is one tack we could have taken—say,

“the force-maker selects the process with the lowest cost.”
There are two damning problems with this approach:

1. Substantively, this amounts to a very strong form of rationality, requiring
the force-maker to always choose the cheapest process. But she might
lack the knowledge to do so, or she might have other reasons for choosing
a more expensive process—say, because a cheap process is too risky, or
because a more expensive process sends contracts to the right defense
contractors, or whatever. It could be anything, and we have no way to know.

2. Formally, this approach would require us knowing that each of the infinite
cost minimization problems are well-posed, which is a tall order. One
usually makes such guarantees by appealing to some kind of compactness
property on the set of options and some kind of continuity property on
the cost function, but we have not topologized the set of options and
we have not endowed the cost function with any kind of structure. We
could certainly do so, and perhaps we will in future work—the graph
structure of the force configurations makes this easy to sketch out—but
the substantive point raised above is enough of a headwind to make us
think twice about this approach. Things are hard enough as it is.

Owing to these problems, we have left the terms of the choice schedule slack,
allowing the force-maker to choose as she pleases. But precisely because of the
slackness, we find ourselves in a situation where we must choose one option
from an infinite number of menus via an unspecified process. This is, of course,
a famous philosophical problem blunted by most applied scholars, including
this one, via the (in)famous Axiom of Choice. That axiom asserts that, given a
collection of nonempty sets, there is a way to choose one element from each set,
and it is a foundational principle in mathematics.
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Highfalutin disclaimers aside, we arrive at our rationality assumption.

2.25 Assumption (Compositional Awareness)
The cost functor cost and the choice schedule CS satisfy

n

@ (cost o CS) (L‘*j M;_4, L‘*j Mi) 2 (cost o CS) (HM, Lﬂﬂ) ,

i=1

for all pairs of configurations [ M, |#) M € M and all chained selections

UM _ UMO CS(U/\&HMI) CS(L’:JMn_—l)/UMn) UMn _ |+ v

We call this the Compositional Awareness of the force-maker.

In words, two things are happening here.

1. First, the force-maker understands that processes can be put into a se-
quence. If she knows she can get from [+ M, to |4 M; via f and from
4 M to [t} M, via g, then she knows she can get from ¥} M to [+ M,
via g o f. If she is aware enough of f and g to choose them from their
respective menus, then she is aware enough of g o f to choose it from
its menu. This seems a perfectly reasonable assumption, as many offi-
cers with master’s degrees from specialized war colleges can attest; their
second program began after their first program ended.

2. The real “rationality” bet is the second part of the assumption, which
asserts that the force-maker is thinking in terms of costs. The assumption
entails that the force-maker would never choose a path from [ M to
|4 M,, that is more expensive than the cheapest path of which she is aware.
If she is aware enough of f1, ..., f, to choose them from their respective
menus, then the cost of f,, o -++ o f; sets an upper bound on the cost of the
path she chooses. In this sense, the force-maker is rational—consistent in
some sense with the costs of conversion. To repeat, none of the respective
fi need be optimal in its locale.

The force-maker’s rationality is thus rather weak, more about structural aware-
ness than about the strict optimization motivating goofy homo economicus car-
icatures. Bounded rationality is still rationality, and these assumptions, while
modest, remain capable of question. Yet, despite their limitations, they provide a
framework capable of delivering results sufficiently robust as to justify their inclu-
sion. This allows the force-maker to navigate complexity with enough strategic
foresight, even if not perfectly optimal, while ensuring that her decisions reflect
an understanding of costs and composition over time.
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For example, suppose we have three force configurations—Lﬂ My, L+J Mo,
and (4 M3z—and the conversion morphisms listed in Table 2. Two f's convert

Processes Composites

Process Source Target cost Process Source Target cost

A UM UM, giofi WM HUM; 6
o UM UM, giof, WM HMs;
81 L’_’JMZ UM3 0 h L’_’JMl LTJM3
82 UMz UMa $0f HMl UM3
o WM YM;
hy WM HM;

N G N O W -
g1 W @

Table 2: A set of processes and their costs, structured in & = ﬁ;o.

[ M; into |4 M,, and two gs convert [ M, into (4 M3; the resulting four
composites convert ¥ M; into 4 M3, along with two direct hs. We do not
require that CS ([t My, [ M,) = fi, even though f; is the cheapest process
linking 4} M; and [+] M; likewise, we do not need CS ([*) M,, [H) M3) = g».
What we do require is that the choice schedule is consistent with choices
with resepct to costs. Table 3 lists the allowable combinations of selections from

CS(UMLUMZ) CS(UMZ/UM3) @ CS(HM1/UM3)

fl & 6 g1 0 fl or h1 or ]’lz
fi & 3 §20 fi
fa g1 8 g10 fror hyor hy
f2 § O g20 frorhy

Table 3: Allowable selections for the choice schedule. The first two columns
list the selected direct processes from [t/ M; to [ M, and from (4 M, to
[t M. The fourth column tells us which processes from [+] M to [ M3 satisfy
Compositional Awareness, given the choices in the first two columns.

Hom ([+) M) toHom ([} M3) as a function of the selections from Hom (|+ M)
to Hom ([*) M,) and from Hom (| M;) to Hom ([#) M3). The example makes
clear that the first two choices constrain the third choice by ensuring that the

selected process from [} M to 4 M3 is at least as cheap as the sum of the costs
of the selected processes from [+) M to (| M, and from [ M, to [+ Ms.

27 . . . . . . . .
Here we ignore identity morphisms, which we will discuss more in due course.
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The selection of processes allows us to tell stories about the evolution of
the force-maker’s practices. Consider, for example, the process of constructing
an aircraft carrier. The first aircraft carriers were not custom-built; they were
converted from existing ships. For example, the British aircraft carrier H.M.S.
Argus, deployed in 1918, was constructed from the hull of a partially-built Italian
liner called the Conte Rosso with the addition of a flight deck procured from a
Blackburne-class reconnaissance s.hip.28 This process was expensive, requiring
two ships and their subsequent fusion, but it was the only way to get an aircraft
carrier at the time. We can think of f as the process of converting raw materials
to a liner and a reconnaissance ship and ¢ as the process of converting a liner and
a reconnaissance ship to an aircraft carrier. Carriers were originally made via
process g o f, but as the technology of carrier construction advanced, it became
possible to construct carriers directly, without the need for the intermediate step.
Such hs were cheaper than g o f, and so the choice schedule shifted over time;
the first British custom-built carrier, H.M.S. Hermes, was deployed in 1923.

The choice schedule requires the choice of a morphism for each pair of con-
figurations, including the pair of the same configuration. Among the available
options lives the identity morphism, which carries zero cost. But, some configu-
rations might require maintenance, and the cost of maintaining a configuration
in its current state might not be zero. However, Compositional Awareness im-
poses a requirement on maintenance: the cost of maintaining a configuration in
its current state must be less than the sum of converting it to anything else and
then converting it back! For any fixed configuration [t} M € Mj, define

o ([HJM') = (cost o C8) [+ M, [+ M") @ (cost o C8) (|+] M, |H] M),
which is the cost of converting |+ M to |+ M’ and then back to [+) M. Composi-

tional Awareness takes the form
s (Lﬂ M') = (cost o CS) (Lﬂ M, L"j./\/l) for all L"j./\/l' e M;.

The tenability of this requirement depends on the time horizon we wish to
impose on the force-maker’s practices; the shorter the horizon, the more tenable
the requirement. Shorter time horizons make for smaller costs, and fewer
available conversions. The former suggests that the “always select the identity”
strategy is a limiting, instantaneous case of the choice schedule, and we allow
ourselves this interpretation as a maintenance-free baseline of theoretical import.
This latter point suggests that many «» (H M') = 00, as there might be no way
to convert a configuration into another and back again.

2 Details are drawn from Norman Polmar’s adorable Aircraft Carriers ( ), a comprehensive
history of the aircraft carrier and veritable treasure trove of information.
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Yet another interesting wrinkle in our structure is what happens once the
force-maker deems a given conversion impossible. By construction, each hom
set includes the impossible process X, and the Dominance of Impossibility
(Primitive 2.10) ensures that any chain one could have built with the impossible
process is itself impossible. But strictly speaking, Dominance of Impossibility
is not required for this to hold. Since the cost co—the cost of the impossible
process X—is absorbing with respect to ® (Lemma 2.20), the cost of any chain
that includes the impossible process is infinite. Since 00 = & for any & € E, the
cost of any chain thatincludes the impossible process is atleast as great as the cost
of any other chain. Thus, Compositional Awareness binds not at all with respect
to processes including at least one link the force-maker deems impossible. Thus,
we have a consistency not just in the processes the force-maker truly chooses,
but also in the conversions she deems impossible.29 Since 00 may be assigned
to any process—not just the impossible process—the force-maker may use it to
indicate that a process is too costly, too risky, or otherwise undesirable, similarly
disconnecting it from the rest of the space of configurations. Thus, literal
impossibility is not required for the force-maker to treat a process as impossible,
and the force-maker’s practices are consistent with her beliefs about the costs of
conversion. This is what we mean by Compositional Awareness.

Summary of Section 2.4. In this subsection, we introduced the choice schedule
CS, which encodes the force-maker’s choice of a process from each set of
possibilities. We then introduced the Compositional Awareness assumption,
which requires that the force-maker’s choices are consistent with the costs of
conversion. In a sense, the assumption brings all of our implicit notions of how
the force-maker navigates the space of configurations into the light, providing a
framework for reasoning about her practices. We also discussed the implications
of the choice schedule for the force-maker’s practices, including the maintenance
of configurations and the treatment of impossible processes. The force-maker’s
practices are consistent with her beliefs about the costs of conversion, and the
choice schedule provides a simple space for structured reasoning. In a sense,
then, the assumption is painfully obvious either in its acceptability or its rejection.
What might not be so obvious, however, is that this mild behavioral postulate is
enough to deliver an even deeper structure for the space of force configurations.

It should be noted that Dominance of Impossibility is useful for other reasons. For example,
since 0o € Hom () M, [} M) for all [ M € M], composability would require us to consider
infinite chains of impossible processes X o X o ---. Dominance of Impossibility ensures that these
chains evaluate to X, which is a reasonable result. We ultimately will be using infinite costs more
than we will be using impossible processes, so the Dominance of Impossibility is less important
than the absorbing property of co.
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2.5 The Space Between Configurations

We have developed a theory wherein we can gather molecules into configura-
tions, convert these configurations into new configurations via costly processes,
and select processes that convert one configuration into another. It might not
be obvious, but our construction is amenable to distance-like measures between
configurations. This introduces an interesting question: what makes distance
distance? Our answer is inspired by the pathbreaking work of category theorist
F. William Lawvere ( ), who helped distill the essence of distance to its
simplest form in a decidedly beautiful way.

What is distance? In the most general sense, distance is a measure of
separation between two points: two points that are not very separated have a
small distance between them, while two points that are very separated have
a large distance between them. This is a simple idea, and our intuitions of
how to execute such measurement are quite strong. In the Euclidean plane, for
example, we can measure the distance between two points by drawing a straight
line between them and assigning a non-negative real number representing the
length of that line. This is the most common way to measure distance, but it is
not the only way. Once one learns the Pythagorean Theorem, for example, one
can measure distance in terms of the lengths of the sides of a right triangle. This
is a different way to measure distance, but it is still a way to measure distance
all the same. And indeed, in many contexts there exist many ways to measure
distance, each with its own strengths and weaknesses. Thus, it is worth thinking
about what distance is in traditional terms.

2.26 Definition (Metric Space, Traditional Style)

A traditional metric space is a pair (X, d), where X isasetand d : X x X — Ry
is a function satisfying the following properties:

1. Traditional Codomain: d(x,y) € Ry forall x,y € X;
Identity of Discernibles: d(x,x) = 0 forall x € X;
Discrimination: x # y implies d(x,y) > 0 forall x,y € X;

Symmetry: d(x,y) = d(y,x) forall x,y € X; and

SN

the Triangle Inequality: d(x,y) + d(y,z) = d(x,z) forall x,y,z € X.

Each property captures an essential feature of distance, and all of them appeal to
the intuitions we gain from real-world experience and elementary geornetry.30

%Classical as these properties are, their formal introduction dates back only to Maurice Fréchet’s
classic “Sur Quelques Points du Calcul Fonctionnel” ( )
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We discuss the properties just enumerated in turn.

1. Traditional Codomain: d(x,y) € Ry for all x, y € X. This property simply
asserts that distance is something measured in non-negative real numbers.
It calibrates the ruler just the same way that & calibrates the device that
measures costs in the context of force configurations. Notice its inability
to capture the idea of infinite distance, which has been key in our theory.

2. Identity of Discernibles: d(x,x) = 0 for all x € X. This property asserts
that the distance between a point and itself is zero. It is a natural property
that carries a few different meanings. One way to see it is that the system
is static: each location is a fixed point in space, and the distance between a
point and itself is zero because the point is already there. Another is that
the points are small, and the distance between a point and itself is zero
because the point is so small that it has no size.

3. Discrimination: x # y implies d(x,y) > 0 for all x, y € X. This property
asserts that the distance between two different points is strictly positive.
It captures the idea that distance is a measure of separation, but it is
restrictive in the sense that the same point cannot be in two places at once.

4. Symmetry: d(x,y) = d(y, x) for all x, y € X. This property asserts that
the distance between two points is the same regardless of the order in
which they are considered. In the context of a resource theory, the costs of
conversion mightbe different depending on the direction of the conversion:
assembly and disassembly are not necessarily the same, much like running
up- and downhill are not the same.

5. the Triangle Inequality: d(x,y) + d(y,z) = d(x,z) for all x,y,z € X.
For better or worse, the Triangle Inequality is the most interesting and
essential feature of a metric space. It encodes, and significantly expands,
the maxim that the shortest distance between two points is a straight line.
This is just the sort of homespun wisdom that points toward essential
truths, and its logic dates back (at least) to the famous Proposition 20 from
Book I of Euclid’s Elements ( ):

In any triangle two sides taken together in any manner are greater
than the remaining one.

This property is a powerful one, and it is the one that most clearly distin-
guishes a metric space from a mere set.

These five properties are the essence of introductory notions of distance, rein-
forced by centuries of mathematical practice and our real-world experiences.
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Lawvere ( ) takes issue with three of the properties just discussed:

None of our results in this paper will depend on the additional
Frechet axioms:

if X(a,b) =0thena =0
X(a,b) < o0
X(a,b) = X(b,a).

The first of these is not very natural from the categorical viewpoint
since it corresponds to requiring that isomorphic objects are equal
[..]. Allowing o0 among the quantities is precisely analogous to
including the empty set among abstract sets, and it is done for
similar reasons of completeness [...]. The non symmetry is the
more serious generalization, and moreover occurs in many naturally
arising examples, such as X(a, b) = work required to get from a to
b in mountainous region X (p. 138).

Lawvere’s critique is that the Identity of Discernibles and Discrimination prop-
erties are not necessary for a distance-like measure, and that the Symmetry
property is not necessary for a distance-like measure to be useful. In fact, he
argues that the Symmetry property is not even necessary for a distance-like
measure to be natural, as it is violated in many natural examples. Accordingly,
we arrive at a more general definition of a metric space, with the construction
now being called a Lawvere metric space.31

2.27 Definition (Metric Space, Lawvere Style)

A Lawvere metric space is a pair (X, d), where X is a set and d : X x X — Ry is
a function satisfying the following properties:

1. Extended Codomain: d(x, y) € Ry forall x,y € X;
2. Identity of Discernibles: d(x,x) = 0 forall x € X, and
3. the Triangle Inequality: d(x,y) + d(y,z) = d(x,z) forallx,y,z € X.

What has been added is the possibility of infinite distance; what’s been removed
are the maxims that points are only where they are and that moving backwards
is the same as moving forwards; and what remains are the maxims that points
are where they are and that the shortest distance between two points is a straight
line. This is the essence of real-valued distance in its most general form.

310ne sometimes hears “extended pseudoquasimetric space,” where “extended” points to the
inclusion of 00, “pseudo-" to the relaxation of Discrimination, and “quasi-" to the relaxation of
Symmetry. It simply sounds less elegant than “Lawvere metric space.”
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It might be obvious to the reader that the idea will now be to generalize
Lawvere’s notion of distance to our context. Lawvere’s observations seem sound
when applied here, as (1) we do not wish to impose equality upon isomorphic
configurations; (2) we have need for infinite distance to stand in for impossible
conversions; and (3) the costs of conversion might be different depending on
the direction of the conversion. As such, something like a Lawvere metric
space seems a natural fit for our context. And yet, it seems unlikely that the
force-maker thinks about distance-as-cost in unidimensional, real-valued terms.
The processes at hand are too intricate, the span of configurations too vast,
and the costs of conversion too varied for the force-maker to think in terms
of a simple, real-valued distance. But, per our discussion in Section 2.3, the
force-maker might also ask questions where distance is far simpler than what
the real numbers offer, such as when she asks whether a given conversion is
possible or not. We therefore work with = as our codomain, and we generalize
the notion of distance to our context.

2.28 Definition (Metric Space, Weak Style)

A weak metric space calibrated by E is a pair (X,d), where X is a set and d :
X x X — Eis a function satisfying the following properties:

1. Weak Codomain: d(x,y) € Eforall x,y € X, where E satisfies the properties
discussed in Section 2.3;

2. Identity of Discernibles: d(x, x) = Og for all x € X; and

3. the Triangle Inequality: d(x,y) ® d(y,z) = d(x,z) forall x,y,z € X.

We retain the general idea of Lawvere’s metric space, but we replace the real
numbers with E; this also involves replacing the real 0 with Oz, the real + with
@, and the real = with =.

At stake at the moment is whether the force-maker’s practices are consistent
with a notion of distance. Nearly any data structure we might think of her using
to reason about the space of configurations will have some notion of distance,
and it is this notion of distance that we are trying to capture. In formal terms,
we are asking whether the force-maker as we have structured and motivated her
can envision the space of configurations as a weak metric space calibrated by =.
Since E has been left open to interpretation, this question is not as restrictive as
it might seem: we merely need her to be calibrated by some E that satisfies the
properties discussed in Section 2.3. Put differently, we do not wonder whether
the force-maker abides by some rule but rather by some class of rules, and we
are interested in the structure of the space of configurations that emerges from
her practices conditional on the rules she abides by.
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Let us define our candidate weak distance function.

2.29 Construction (Candidate for Weak Distance)
We define the function

d: M} xM] — E,

(VECHVED B (VR AGEO CE (VECH VR

where © is the subtraction operation in & and & = cost o CS : M| x M] — E.

The candidate distance function d is the “difference” between the costs of con-
verting [*) M into [+) M; and converting |+ M into itself, where “difference”
has been put in scare quotes because it is not a subtraction in the traditional
2. . . . .

sense. It still serves its purpose by measuring the separation between two con-
figurations in terms of the costs of conversion. This is an important quantity: the
gap between the costs of turning [/ M into [ M, and the costs of maintaining
[} M in its current state. This subtraction has two important effects:

1. It zeroes out the cost of maintaining a configuration in its current state, as
the distance between any configuration and itself will be O=.

2. The more nuanced effect is relational: the distance between two configu-
rations contains information about the relationship between the cost of
converting one configuration into another and the cost of maintaining
the first configuration in its current state. If the initial state has high
“inertia”—i.e., low maintenance costs—then the distance between it and
other configurations will be characterized primarily by the costs of con-
version. If, on the other hand, the initial state has low inertia—i.e., high
maintenance costs—then the distance between it and other configurations
will be smaller, as the costs of maintaining the initial state will be sub-
tracted from the costs of conversion. If the costs of conversion are small
compared to the maintenance costs, then the target configuration “attracts”
the initial configuration, and the distance between them will be small.

Thus, the candidate distance function allows for a dynamic approach to distance.

32Recall that we defined

&r — &1 otherwise,

51952:{

where —o is the hom object in the quantale E—i.e., £, — &; satisfies

(GB3@ &) 28 &= &3 (& = &) foralléz € E.
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These dynamics play a key role in shaping the space of configurations. As
such, let us begin from the stylized case where there are no maintenance costs.

2.30 Definition (The Static Cases)

We say a choice schedule CS is static just in case
(cost o CS) (L‘*j M, L*‘JM) = Og for all L‘*j./\/l e M;.
IfCS (Y M, [ M) = idyy pq forall [ M € My, we say CS is identically static.

The identically static case is the limiting, instantaneous case of the choice sched-
ule, where the identity morphism is always selected. It means that that force-
maker’s way of thinking about the space of configurations is to treat each
configuration as a fixed point in space. This is the most intuitive way to think
about force configurations in the context of what makes for a strong force.

The static case makes our lives quite easy.

2.31 Proposition (The Static Case)
If CS is static, then (]MZ, d) is a weak metric space calibrated by E.

Proof. Weak Codomain is immediate from the definition of 4, and Identity of
Discernibles is immediate because CS is static. We therefore focus only on the
Triangle Inequality. Choose any three configurations (| M, [+ M,, and | M3
in ]MZ; to ease notation, write

&= &([HM;, [H M) foralli, j e {1,2,3}.
The Triangle Inequality may be written

(E120 &) ® (&30 Em) 2 E13© Enn-
Since CS is static, &;; = Oz for all i € {1,2, 3}, so we may simplify the above to

1 ® &3 = &q3.

This is Compositional Awareness, and so the Triangle Inequality holds. [

Remarkably, the static case demonstrates that Compositional Awareness is pre-
cisely the correct rationality postulate to impose on the force-maker’s practices:
itis fully equivalent to the Triangle Inequality, the most interesting and essential
feature of a metric space. Thus, minimally-consistent reasoning in terms of
static cost gives rise to a notion of distance and vice versa. This is a powerful
result, suggesting that the force-maker’s practices are consistent with a notion of
distance, and that the space she envisions is structured in a way that is amenable
to reasoning. Such unexpected joys are the fruits of our labor.
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The more speculative case is when the force-maker’s practices are not static.
Recall that we can write the Triangle Inequality in compact notation as

(£120&11) ® (E3© Em) 2 &13 © &1

This always holds in case the right-hand side is Oz—i.e., when &17 = &13. So to
make things difficult, suppose that the right-hand side is not Oz, yielding

(120 &11) ® (E3© Epp) 2 &1 — &3,
= ({120 E11) ® (E23© &) ® &qq = &y

7

We have a triangle inequality that is not quite a triangle inequality: the two “legs”
of the triangle are residuals of the costs of conversion, and the “hypotenuse”
is the cost of conversion. One of the legs is “de-residualized” by adding its
maintenance costs back—again, recall that this is not a true difference but rather
a residual in =—but the other leg is not. Put differently, 11 is put back into the
mix, but &;; is not. This sets an upper bound on how large &,, can be, as it could
well be that we subtract away so much from &,3 that the Triangle Inequality is
violated, even when Compositional Awareness holds. In other words, if L+J Mo,
is too costly to maintain that it naturally wants to decay into [+) M3, then the
Triangle Inequality might be violated. We might call this a slingshot effect, baked
into the DNA of the candidate distance function.
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Figure 7: The slingshot effect: the Triangle Inequality is violated when the costs of maintaining
[+ M, are so high that it naturally wants to decay into [+) Ms.
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To the degree that the force-maker is thinking dynamically, the slingshot
effect is a feature, not a bug. Nevertheless, it is a feature best left for another
day, and we turn our attention to determining how large it is allowed to be
without violating the Triangle Inequality. Notice that this requires gradually
strengthening Compositional Awareness to begin to account for maintenance
costs and associated slingshot effects, suggesting that the force-maker must think
a little bit harder about the costs of conversion to allow for distance-oriented
dynamic reasoning.

2.32 Definition (Dynamic Awareness)

We say a choice schedule CS satisfies Dynamic Awareness just in case
(£120&11) ® (23 © &) @ En 2 Eus
forall |)) My, [ My, and |} M3 in MJ.

Dynamic Awareness is the rationality postulate that ensures that the slingshot
effect is not too large. It is stronger than Compositional Awareness, as it requires
not just that the force maker understands composition of processes and sums of
costs, but also residuals of costs.

Dynamic Awareness carries a second interpretation, one less focused on
rationality and more on military discipline. The force-maker is not just aware of
the costs of conversion, but also of the costs of maintenance. The latter are not
just a nuisance, but a discipline: they are the costs of keeping the force-maker’s
house in order. In a well-disciplined force, the configurations stay where they
are—presumably doing as they are told—so there is no urge for them to decay
into other configurations, and thus no urge for the slingshot effect to be large.
Consider, as an easy example, George Washington’s ability to keep his troops in
line at Valley Forge during the winter of 1777-1778. His initial force of 12,000
troops was reduced to 10,000 (or so) by the end of the winter, but the force
was kept in line and ready to fight thanks to training from (inter alia) Friedrich
Wilhelm von Steuben. The configuration surely decayed, but this decay was
bounded by the incredible efforts of the officer corps and the rugged resilience
of the (poorly equipped) troops. This is the discipline that Dynamic Awareness
points to: the ability to keep the force in line, to manage maintenance costs to the
point that they do not induce unnecessary decay, and to keep the slingshot effect
in check. And again, this deep substantive interpretation is fully equivalent
to the Triangle Inequality in the dynamic setting, linking the force-maker’s
practices to the structure of the space of configurations. Though Washington
likely did not reason in terms of a weak metric space, his practices were fully
equivalent to those of a force-maker who did.
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We can offer a concrete interpretation of the costs of force conversion in the
context of the atomic theory of force. Recall to this point that we have:

1. defined a set of force molecules M| (Primitive 1.5) as connected graphs
labeled by the elements of force L;

2. defined a notion of graph union (Definition 2.4) and used it to construct a
set of all force configurations M; (Primitive 2.2);

3. defined four elementary edit operations (Definition 2.11) and demon-
strated their sufficiency for converting configurations (Lemma 2.12), giv-
ing rise to the category of force configurations Config (Construction 2.13)
with morphisms the sequences of edits; and

4. attached to each elementary edit some cost in & (Section 2.3).

It turns out that in the special case where this final step is done with non-negative,
finite real numbers, we arrive at a well known construction in graph theory and
computer science: the edit distance.”

2.33 Definition (Edit Distance)

The edit distance between two force configurations ¥ My and |+ M, is the minimum

cost of converting |#) My into |¢) M using the elementary edits when cost : My X
M] — Rsg. We denote the edit distance by ed ([t} My, [} My).

This definition of the edit distance contains two important features, namely
that it addresses both choice (via the minimality requirement) and cost (via the
cost of conversion). Taken together, these mean that choice implicitly chooses
minimum-cost sequences of elementary edits, which is a well-posed notion with
finite sequences of edits measured in real numbers. More formally, let 4 M
and [t} M be two force configurations, and define Paths ( UM, ﬂ) as

{UM=UMoﬂ>LﬂM1ﬂ»-~ﬂ»Lﬂm= |

Then the edit distance is given by

ed(UM U/\/l) mm Zcost

¢,1)EPaths HM, U./\/l i=1

ne]N},

where cost measures the cost of each elementary edit in real numbers. This
straightforward definition distills the problem down nicely.

3 The edit distance is a well-appreciated construction in the context of string theory, where
it is used to measure the distance between two strings. See Kaspar Riesen’s Structural Pattern
Recognition with Graph Edit Distance ( ) for a comprehensive introduction.
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The edit distance is indeed a distance function, as we now show.

2.34 Lemma (Edit Distance as a Metric)

The edit distance is a weak metric calibrated by R,.

Proof. We must show that the edit distance satisfies Identity of Discernibles
and the Triangle Inequality, Weak Codomain being immediate. Identity of Dis-
cernibles is immediate from the definition of the edit distance, as the minimum
cost of converting a configuration into itself is 0, via the identity morphism of
no edits. We therefore focus on the Triangle Inequality. Choose any three force
configurations [ My, [} My, [ M3 in M[ . The Triangle Inequality is

ed ([H My, [+ My) + ed ([ My, [+] M3) = ed ([ My, [+ M),

or more explicitly as

12 123 1

Zcost ((pllz) + Zcost ((],‘)]23) > cost (qb;lf),

i=1 j=1 1

@

=
1]

where gb}z, (/5]2-3, and q)i?’ are the elementary edits in the minimum-cost sequences
of edits converting [+) M into [¥ M, [+ M, into [+) M3, and [ M into [+ M,
respectively. Now suppose to the contrary that the Triangle Inequality is violated,
so that

112

Z cost (¢>}2) + "223: cost (¢]23) < ”213: cost (qbf) ,
i=1 j=1 k=1

where we know this from the completeness of = on R (. But then the right-hand
side would fail to be the minimum cost of converting [*) M into [+ M3, since
the sequence of elementary edits

3

¢]2 4)12 (]1)2 (P23
UMl_l,...L”,UMZ_],...ﬁ,UMa

would be a sequence of edits converting [+ M into [+ M3 at a cost strictly less
than the minimum cost. This is a contradiction, and so the Triangle Inequality
holds. We conclude that the edit distance is a weak metric calibrated by R. m

Naturally, one could come up with conditions under which the edit distance is a
traditional metric, but we leave that for another day.34 What matters here is that

#See a recent paper by Francesc Serratosa ( ) for a set of weak conditions under which the
edit distance is a metric; no within-molecule triangle inequality is required.
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a concrete construction abides by the rules of distance in our atomic theory of
force, providing intuitions about how the abstract construction works. We are
content to leave the edit distance in weak form to avoid unnecessary clutter.
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One remarkable thing about our set-up is that the metric space (M;,d)
evolves in response to changes in the force-maker’s practices or her understand-
ing of costs. Which configurations are close and which are far apart depend
on cost and CS, and so the space of configurations is dynamic. Suppose, for
example, that cost and CS were functions of some parameter A € A. Then
we could define a family of metric spaces (]MZ, d ;L), where d, is the distance
function associated with cost; and CS,. This family of metric spaces would
allow us to track how the space of configurations changes as the force-maker’s
practices change. Even though the configurations themselves stay in one place,
the distances between them shift as the force-maker’s practices evolve; alterna-
tively, the distances could stay in place and the configurations themselves could
shift. In either case, we learn the deep lesson that points are fully determined
by their relationships to other points, and that the space of configurations is
a dynamic entity that evolves in response to the force-maker’s practices. Just
which deep parameter A is responsible for this evolution is a question for another
day, but it could be a function of technological progress, political change, or
even the force-maker’s own understanding of the world.

Summary of Section 2.5. We first thought through what an appropriate notion
of distance would look like, eventually setting on the conception of a weak metric
space calibrated by a quantale. We then considered the static case, where the
force-maker treats each configuration as a fixed point in space, and showed
that the Triangle Inequality is equivalent to Compositional Awareness, thus
linking cost-based reasoning to distance-based reasoning in something like a
principle of least action.” Remarkably, the dynamic case required us to take
Compositional Awareness as a starting point and gradually strengthen it to
account for maintenance costs, leading to the notion of Dynamic Awareness.
The analysis honed in on the steadiness of a force configuration in the context
of its likelihood to decay into another, suggesting that discipline is necessary
for the force-maker to reason about costs in distance form. We will now use the
distance function to construct a topology on the set of all force configurations,
allowing us to reason about the structure of the space of configurations in terms
of neighborhoods and open sets. Then, and only then, will we be prepared to
issue a verdict on force as a concept in the context of political economy.

*The principle of least action is a fundamental principle in physics, stating that the path taken
by a system between two points is the one that minimizes the action, a quantity that is the integral
of the Lagrangian over time. The principle of least action is equivalent to the Euler-Lagrange
equations, which are the equations of motion in classical mechanics. In this context, a weak
form of cost minimization serves as a principle of least action, suggesting that the force-maker’s
practices are consistent with a notion of distance.
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2.6 Convergence

We have introduced distance in the service of a larger goal: namely, to construct
a political-economic topology for the set of all force configurations M;. A
topology is a way of understanding the structure of a set, particularly with
respect to concepts like continuity and convergence. Formally, a topology on
M is a collection Tz of subsets of M satisfying three properties.

1. The Empty Set and the Whole Set: @, M} € Tz;
2. Finite Intersections: if Uy, ..., U, € Tz, then []_, U; € Tz; and
3. Arbitrary Unions: if {U;};¢; € Tz, then |, U; € T&.

Any collection of subsets satisfying these properties is a topology, but we are
especially interested in topologies that reflect the underlying political-economic
problem at hand.

We begin with the idea of a neighborhood of a configuration.

2.35 Definition (Neighborhoods)
Let [f) M € MJ and & € E. A neighborhood of [+) M is a set

V() = [l e Mz > a (Y m L))

A neighborhood of a configuration is the set of all configurations that can be
converted into the configuration at a cost strictly less than ¢&. This is a natural
way to think about the space of force configurations: two configurations are
close if they can be converted into one another at a low cost. The neighborhood
of a configuration is the set of all configurations that are close to it in this sense.

Neighborhoods are the building blocks of a topology, and we now use them
to define the open sets of a topology.

2.36 Definition (The Candidate Conversion Cost Topology)

Aset U € MY is open just in case for all configurations ¥} M € U, there exists a cost
& € E such that N (|} M) € U. The collection of open sets is denoted Ty

In words, a set of configurations is open if, for every configuration in the set,
there is a cost such that all configurations close to it at that cost are also in the
set. This generalizes our notion of open sets in Euclidean space: a set is open
if, for every point in the set, there is a radius such that all points within that
radius are also in the set. Here & is our (rather abstract) radius and N ([+) M)
is our (rather abstract) ball. This is the essence of a topology: it is a way of
understanding the structure of a set in terms of neighborhoods and open sets.
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Yet again, an example will help to clarify the concept. Consider again the
hoplite as depicted in Figure 8. What are the neighborhoods of this hoplite

LONCHE

1

ASPIS

T

SOLDIER —— > DORY

|

KRANOS THORAX KNEEMIDES

Figure 8: A hoplite molecule, dory/lonche variant.

configuration? Well, in this case, we might think that the decorative LONCHE is a
bit of a luxury, and presumably it is not too difficult to convert the hoplite into
a hoplite without a LONCHE—this would require the removal of one vertex and
two edges. This, if given a small cost radius &, the neighborhood of our original
hoplite molecule would be itself, the hoplite molecule without the LONCHE, and
any other molecule similarly “close” to the original with respect to the costs of
conversion. This is why our notion of distance was such a useful concept: it
allows us to reason about the structure of the space of configurations in terms
of costs of conversion as if they were distances in a metric space.36 A larger
neighborhood would include these configurations and others further away—
say, ones where the weapon switches from a DORY to a XIPHOS or the ASPIS is
replaced by a PELTA. But in general, the idea here is that each configuration
is surrounded by a class of abstract balls measured in costs, and within each
ball are all the configurations that are close to the original in terms of costs
of conversion. This is the essence of a neighborhood, and it generalizes our
intuitions from elementary analysis to the space of force conﬁgurations.37

361t ought to be noted that the metric structure is not necessary for the construction of a topology,
which indeed is meant to generalize the notion of distance. And yet, few people in the social
sciences voluntarily work with non-metrizable topologies, as they are difficult to reason about.
The metric structure is a useful crutch, as it provides a systematic way for us to apply something
we can conceive of—the costs of conversion—to something trickier.

¥ Observe that we have d (Y M, f) M) = 0z by construction, so neighborhoods are never
empty. As we have allowed distinct configurations to have zero distance between them, it could
well be that Mg, ([# M) # {[) M}, suggesting that multiple points are in the same place. Thus,
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We confirm that the collection of open sets Ty forms a topology on M.

2.37 Proposition (The Conversion Cost Topology)

Tm; forms a topology on M ; we call it the conversion cost topology.

Proof. We handle each requirement in turn.

1. The Empty Set and the Whole Set. The empty set @ is open vacuously, as
there are no configurations in it and thus no neighborhood tests to fail.
The whole set MJ is open, as for any configuration [ M € M and any
cost & € B, we have N (| M) € M].

a4

2. Finite Intersections. Let Uy, ..., U, € Tz ; we must show that (];_, U; €
T]MZ' We may assume that ﬂlr-lzl U; # @, as otherwise the result is
immediate (by the first part of the proof). So, choose and fix an ar-
bitrary [J M € ()L, U;. We must identify a cost & € Z such that
Ne (M) € N, U;. Since Y M € U, foralli € {1,...,n}, there
exist costs &; € E such that Mg, (| M) € U;. Choose any & satisfy-
ing & = Eforalli € {1,...,n}; at minimum, this includes Ocyst € E
by construction. Then we have Ng (| M) ¢ N, (M) € U; for all
ie€{l,...,n} and so Ng (Y M) < (i, Us. J

3. Arbitrary Unions. Let {U;};e; € Tmy; we must show that | J;c; U; € Tz
Choose and fix an arbitrary [+ M € J;.; U;. Then there exists some i € [
such that [ M € U;, and thus a cost &; € E such that Vg, ([ M) ¢ U;.
Then we have N, (|} M) € Uy U;, and so (;; Ui € T - s

As all three requirements are satisfied, 7; forms a topology on M;. L]

The proof of Proposition 2.37 is a straightforward exercise,”” butitis worth noting
that the topology 7my is generated by the map cost o CS, which represents
the force-maker’s conversion practices and associated costs. It also relies on
the structure E, both in terms of its extremal elements and its ordering. These
elements all encode various aspects of the problem at hand and the force-
maker’s reasoning about it. Moreover, that the proof is straightforward bodes

the space might not satisfy the Hausdorff separation axiom, but this is a feature, not a bug.

One gains intuitions from the standard textbooks in general topology, such as James R.
Munkres’s Topology ( ) or John L. Kelley’s General Topology ( ). As with so many things,
one can also find these definitions in Charalambos D. Aliprantis and Kim C. Border’s Infinite
Dimensional Analysis: A Hitchhiker’s Guide ( ).
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well should future work consider, say, continuous evolution of practices, costs,
and calibrations. Such work lies beyond the present scope, but the present
construction ought to provide reasonable foundations for it.
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Topologies may have many properties, but we are especially interested in
second-countability and Hausdorffness. In words, a topology is second-countable
if it is simple enough to be characterized by a countable set of sets.

2.38 Definition (Second-Countability)
A topology T is second-countable just in case there exists
B = {Bi}ien

called a basis, such that every open set in ‘T can be written as a union of elements of B3:

u-= UBi for some I € IN.

iel

Second-countability is a useful property, as it ensures that the topology is not
too large. It is a generalization of the idea of a countable basis for a topology,
which is a familiar concept from elementary analysis. Owing to the countability
of M], we have the following.

2.39 Corollary (Second-Countability of Tp?)

The convergence cost topology Tm; is second-countable.

Clearly, we can set B = M ; any open set can be written as a union of elements
of from this basis, as any open set is comprised merely of the configurations in
M itself. Though simple, Corollary 2.39 is one of the most important results
in this theory, as it will allow us to discern a sufficient condition for force
representations. We are nearly there!

We next define the Hausdorff property.

2.40 Definition (Hausdorffness)

A topology T is Hausdorff just in case for all distinct configurations [+ My, [ M, €
My, there exist neighborhoods N, ([} My) and N, (1) M>) such that

Ne, ([H M) 0 g, ((H M) = 2.

In words, a topology is Hausdorff if every pair of distinct configurations can
be separated by neighborhoods. This is a generalization of the idea of distinct
points in a metric space being separated by open balls, and it is a fundamental
property of topological spaces. In our setting, however, Hausdorffness is not
necessarily guaranteed, for reasons to be discussed presently.
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Why might the topology 7m: fail to be Hausdorff? The most natural reason

is that there exist two distinct configurations with distance Oz between them.”
When such is the case, any neighborhood including one is sure to include the
other, and so the two configurations cannot be separated by neighborhoods.
This is a natural consequence of our construction, as we have allowed for the
possibility of distinct configurations with zero distance between them, be it in
the static or the dynamic case. It therefore stands to reason to ask whether
we can recover Hausdorffness by (1) imposing a condition on the cost function
cost; or (2) constructing a quotient space that identifies configurations with
zero distance between them. Let us consider the first option first; we begin by
introducing a regular distance function.

2.41 Definition (Regular Distance Function)

A distance function d : M] x M] — E is regular just in case for all distinct

configurations | My, [ M, € M[, we have d (| M, [} M,) > 0.

As an example, the graph edit distance is regular so long as all elementary
edits has a strictly-positive cost. Thus, in the context of the atomic theory
of force, we do indeed recover the Hausdorff property so long as elementary
edits are costly. A similar property obtains in the dynamic case where all
inter-configuration distances are strictly larger than the associated slingshot
maintenance cost. Regardless of the reasons, we have the following.

2.42 Lemma (Regular Spaces are Hausdorff)
If the distance function d is regular, then the topology Tamz is Hausdorff.

Proof. This is nearly immediate; choose any two configurations (| M1, [t} M, €
M. Since d is regular, we have d ([ My, [ M) > 0z. Set &; = & = Og; then
from regularity, we have

Noz (1) M1) 6o ([ M) = [ Mi} o {[ e} = o,

implying that the topology 7wy is Hausdorff. ]

Thus, if the distance function behaves according to our spatial intuitions, the as-
sociated topology it generates is indeed Hausdorff, which simplifies the analysis
considerably by providing a clear separation between configurations.

¥In just a moment, we will use distance-0z configurations to discuss military preparedness,
a hallmark of the organized nature of force. But for now, we are concerned with the topological
properties of the space of configurations.
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The second option for recovering Hausdorffness is to construct a quotient
space that identifies configurations with zero distance between them. This is a
more radical solution, as it involves changing the space of configurations itself,
or at minimum simplifying it in a structured way. The construction requires a
simple assumption: that the distance function d is symmetry for zeroes—i.e.,

d([H My, [HM;) = 0= implies d ([+ My, [+ M) = 0.
Thus, we remove the possibility of left- and right-zeroes, as we are only interested
in configurations that are close to one another in terms of the distance function.

1. Equivalence Relation. Define an equivalence relation ~ on M; by writing

H My ~ [¥) M3 just in case

d ((H My, [t My) = d [+ Mg, [+ My) = 0z

This is an equivalence relation, as we can check.

(a) Reflexivity. Clearly, [ M ~ Y M, asd ((J M, [H M) =0z .
(b) Symmetry. d is symmetric at the zeroes, so this is immediate.
(c) Transitivity. Let [H My, [ M,, [H M3 € M7 be such that

HMi~[HMy and [H My ~ H M.

Then we have d ([ My, [ M,) = d (Y My, [ M3) = 0z. From

the Triangle Inequality, we have

0= @ 0= ?d(UMpUM:&)/

implying that d (|4} My, [ M3) = 0z. Since ~ is symmetric, the
same logic can show that d ([t M3, [t M;) = 0g, and so [+ M; ~
|4 M3, as required.

2. Equivalence Classes. The equivalence classes of ~ are the sets

(WM = {vemi|lfm-fa}.

These equivalence classes are the sets of configurations that are close to
one another in terms of the distance function d. In case the distance
function is regular, the equivalence classes are the singleton sets, as the
distance between any two distinct configurations is strictly positive. In
case the distance function is not regular, at least one equivalence class
will contain more than one configuration. The equivalence classes are the
building blocks of the quotient space:

M /- = ([l ] ) v na).
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3. Obtaining Distances on the Quotient Space. Now that we have our equivalence
classes, we can define a distance function on the quotient space M; /~
by picking the lowest distance between any two configurations in the
equivalence classes—that is, by setting d.. ([t} M1], [t} M>]) to be the
infimum of the set of distances between | M; and [} M,:

VA{a(Wa ae) [ e [l ] [Has e [l M}

This approximation of the distance function is well-defined, as Z is a quan-
tale and thus has infima. Notice that this definition does not necessarily
deliver symmetry of distances, but then again, we were only working with
a weak metric space to begin with. As a matter of course, we observe that

o ([l ). [l 1) =,

and indeed symmetry at the zeroes implies that this is the only zero. Let us
now check the Triangle Inequality: choose any three equivalence classes
[ Mq], [H M1, [ M3] € M] /~. Let us first consider the sum on
the left-hand side of the Triangle Inequality:

d- (W] [Wre]) e d- ([l me] [l ma]).

By definition, this is the sum of the infima of the sets of distances between
configurations in the equivalence classes. It involves four configurations:
one from [ M;], two from [|[*) M,], and one from [[*) M3]. The first
infimum describes a path from [+ M to [t} M, and the second infimum
describes a path from [t M to |t} M. In particular, it need not be the
case that [ M, = 4 M,, since the target of the first path might not be
the same as the source of the second. Thus, the overall path described on
the left-hand side is

L"__JMl — UMZ — Umz — L‘_"J/Vlaf
which is still a path from [t} M; to 4 M3. As such, it is part of the set

over which the infimum is taken on the right-hand side of the Triangle
Inequality, and so the Triangle Inequality holds.

We may conclude:

2.43 Proposition (Quotient Spaces)
(]MZ |~,d.) is a weak metric space calibrated by Z; its metric topology is Hausdorff.

Thus, the construction works as promised, so long as the distance function is
symmetric at the zeroes. This is a mild condition, so we are happy to leave it at
that without further digging into the structure of the quotient space.
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In the context of the atomic theory of force, there are other topologies that
might be of interest, not just the political-economic one derived from the costs of
conversion. We have been telling a particular story about the nature of force, but
other contexts might require different stories. The graph edit distance topology
used to this point induces an enriched category in Graph, and we have used
that to define a weak metric and subsequently a topology. This approach is
especially useful for thinking about how a force-maker might reason about
the space of configurations. Other approaches might be more useful for other
purposes; consider, for example, a subgraph distance approach. This is similar
to the graph edit distance approach, but it measures the distance between two
graphs by the number of edits required to turn one into a subgraph of the other,
rather than the number of edits required to turn one into the other. Consider,
for example, a situation where [/ M is a large army of uniformly-equipped
hoplites and [+) M, is a single hoplite equipped just the same way as those
in |4 M;. The graph edit distance between these two configurations would
be quite large, as the two graphs are quite different. But, we would have
Asubgraph (Y My, | M) = 0g, as the single hoplite is a subgraph of the large
army. This is a different way of thinking about the space of configurations,
one more naturally concerned with the structure of the configurations—and in
particular, their natural structural hierarchies—than with the costs of conversion
between them. This is a different story about the nature of force, and it might

C 40
be more useful in different contexts.

Summary of Section 2.6. We have constructed a topology on the space of force
configurations, ]MZ, by using the costs of conversion between configurations as
a proxy for distances. The open sets in this topology are the neighborhoods of
configurations defined in political-economic terms via the weak metric space
structure. Since the set of all force configurations is countable, the topology
naturally inherits an important topological property called second-countability.
Less obvious is another property called Hausdorffness, which is not guaranteed
by the construction. We discussed two ways to recover Hausdorffness: by
imposing a mild condition on the distance function or by constructing a quotient
space that identifies configurations with zero distance between them, again
under mild restrictions on the distance function. The first of these delivers
Hausdorffness directly, whereas the latter does so after issuing the more radical

40Naturally, there are topologies on graph spaces other than the graph edit distance topology
and the subgraph distance topology. In uncertain settings on large graphs, one might consider
more probabilistic approaches like the one defined by Benjamini-Schramm convergence, which
is a topology on the space of graphs that is induced by a random walk on the graph.
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change of simplifying the space of configurations itself.
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Summary of Section 2. This section, the core of the manuscript, has been a
journey through a resource-theoretic approach to force. We entered into the
section armed only with the set of all force molecules, IM;, a subset of the set of
all finite connected graphs labeled by the elements of force L. Included in this
set are the isolated elements, such as a soldier or a weapon, as well as the more
complex molecular structures, such as a hoplite or a phalanx. Then:

1.

In Section 2.1 we introduced a gathering operation W that allows us to
combine force molecules into force configurations, resulting in the set
of all force configurations, ]MZ, itself a subset of the free monoid on M,
generated by w.

In Section 2.2 we introduced hom sets linking force configurations, where
these encode the processes by which one configuration can be converted
into another. Each Hom (|t} M, [¥) M, ) contains all ways in which [+] M;
can be converted into [ M, including an impossible process .

In Section 2.3 we introduced a cost calibration structure =, a quantale that
allows us to assign costs to the conversion processes. Just as time and
space are (typically) calibrated by real numbers, so too are the costs of
conversion calibrated by elements of =.

. In Section 2.4 we introduced a choice structure CS that allows us to reason

about the force-maker’s decision-making process. It provided an opportu-
nity to impose a mild behavioral postulate called Compositional Awareness,
which essentially encodes the idea that the force-maker understands com-
position and the combination of costs as well as we do.

In Section 2.5 we used all of these structures to introduce a generalized
weak metric structure on the space of force configurations, M;. We
saw that, in the static case where maintenance processes are trivialized,
Compositional Awareness is precisely the same as the Triangle Inequality.
In the dynamic case, Compositional Awareness must be strengthened to
Dynamic Awareness, a more stringent condition.

Finally, in Section 2.6 we used the aforementioned metric structure to con-
struct a topology on the space of force configurations, M; . The topology
has a countable basis and is Hausdorff, provided the distance function is
regular or the space is quotiented by the zero distances.

We now turn our attention to what can be done with this structure, and in
particular to how we can reason about the organization and representation of
force. These are the subjects of the next two sections, respectively.
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3 Force is Organized

It is difficult to conceive of the force produced by a state—or even a state-like
entity—without considering how it is organized. One can imagine a completely
unstructured collection of soldiers, each acting under their own initiative, but
we’d like not refer to such a collection as a “force.” Such a thing might be a mob,
ariot, or a band of brigands, but it is not a force in the sense we are interested in.
The force produced by a state is necessarily organized, and this is a key part of
the force itself. We therefore cannot study force without studying its structure.

This is a hoary topic, predating the modern nation-state by over a millen-
nium. As evidence, consider the detail with which Julius Ceesar describes the
organization, and reorganization, of Roman forces in his Commentaries. The main
unit of the Roman infantry was the legion, each of which included 3,500-5,000
men ( , ). During the Gallic Wars, Ceesar commanded at least twelve
such legions, which were assigned numbers corresponding to the order in which
they were formed. Each legion was divided into ten cohorts; each cohort was
divided into three maniples; and each maniple was divided into two centuries
(or ordo). The centuries were the basic tactical unit; depending on the historian
consulted, they included between 60-120 infan’crymen.41 The Roman cavalry
was drawn from the citizenry, and it was organized into separate units called
ala, each of which was divided into turmae. Organization was a less-rigid affair
in the cavalry, and many horsemen were organized into ad-hoc units as needed.
Artillery units—catapults, ballistae, and the like—were even less organized, and
they were often attached to infantry units as needed.

The Roman example, though a bit overplayed, is exceedingly important.
Niccolo Machiavelli, for example, considered the Roman legion the epitome of
military organization, and he used it as a model for his own military reforms
in Florence, right down to the disdain of cavalry and artillery; these reforms

are discussed at length in Machiavelli’s Art of War ( )- The aforementioned
Maurice of Nassau admired Julius Ceesar’s organization of force, and he sought
to emulate it in his own army ( , , pp. 129-130). Perhaps most

drastically, the reorganization of the French army into the corps system by
Napoleon Bonaparte is credited with much of his success in the field (see, e.g.,

, ), and these corps were themselves organized along the lines of
the Roman legion. Since part of the motivation for this section is that force-makers
seem to care a great deal about organization, the Roman example is a good place to

41]udson ( , p- 1) defines a tactical unit as “a body of troops under a single command, by a
combination of several of which a higher unit is formed.” This fractal-like structure is a key part
of the Roman military organization, and indeed of military organization more generally.
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start given its prominence in the minds of so many real-world force-makers.
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3.1 The Structure of Force

Organization being a key part of force, we ought to incorporate it into our theory.
We begin by establishing a primitive notion of force structure, which is a partial
order on a set of force units representing the chain of command.

3.1 Primitive (Force Structure)

A force structure is a finite partial order (V, <), where each v € V is a force unit
and < is a subordination relation on V, where v | v, means that vq is subordinate
to vy. The set of all force structures is denoted

F = | part(n),
neN

where Part(n) is the set of all partial orders on thesetn = {1,...,n}.

The chain of command encoded by the partial order < is a key part of the force
structure. Being a partial order, <2 is reflexive, transitive, and antisymmetric.
Reflexivity will not factor into the theory much, as it is a trivial property: every
force unit is (in a sense) subordinate to itself, suggesting a minimal degree
of autonomy implicit in being called a unit at all. More important, of course,
is transitivity, which ensures a coherent chain of command: if a company is
subordinate to a battalion and a battalion subordinate to a brigade, then the
company is subordinate to the brigade, too. Finally, antisymmetry ensures that
the chain of command is not circular: no two distinct units can be subordinate
to one another, ensuring that the chain of command is a tree. The substantive
properties encoded by transitivity and antisymmetry seem reasonable in the
context of organized force, where much of the point of being organized at all is
to avoid violations of these properties.

It should be noted here that we can weaken the antisymmetry requirement
to allow for more general organizational structures without any technical diffi-
culty: nearly all of the results in this section will hold for preordered sets—i.e.,
sets equipped with a relation that is merely reflexive and transitive. The anti-
symmetry requirement represents substantive motivations more than technical
ones, as it encodes the important real-world property that no two distinct units
are mutually subordinate. When we add non-command relationships among
units to the force structure, we will keep things quite general, allowing for a
wide variety of organizational structures for support, training, logistics, and so
on. But it seems to your humble author that modern chains of command do
not tolerate circularity, and so we will keep the antisymmetry requirement in
place for subordination. Of course, the reader is free to consider more general
organizational structures if they wish.
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We have enough apparatus to envision the structuring of force in a way
quite close to how force-makers do—after all, the proclivity of excellent military
minds to reorganize their forces suggests that the organization of force is a key
part of their reasoning. Figure 9 shows what one of our Roman cohorts looks
like in a force structure: superior to three maniples, each of which is superior to
two centuries. Figure 10 shows the complete force structure of a Roman legion,
with a single cohort at the top, followed by three maniples, each of which is
followed by two centuries; the fractal nature just described is quite evident in this
presentation. So, for example, we have that Century 1.1 € Maniple 1 € Cohort
and that Cohort 01 < Legion, among various other subordination relations.

Figure 9: Sample presentation of a force structure; the arrows represent subordination.

Legion

@ - @ o @

Figure 10: The complete force structure of a Roman legion; the black dots represent centuries.
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The Roman legion was a model of organization, copied by many—though
not all—of Rome’s successors. Indeed, nostalgia for the old legion system is
a recurring theme in Machiavelli’s Art of War ( ), who laments the condot-
tieri—literally, the “contractors”—who had supplanted the Roman legions and
provided medieval Italian city-states with their military muscle. Medieval and
Renaissance Italian city-states could count on loosely-organized local militias
drawn from the populace, but they were rarely called upon to do more than
fortify a wall or chase down a recalcitrant noble. These local militias, the vestiges
of feudal levies, were almost exclusively infantry; cavalry—more expensive to
maintain, but by this point the dominant arm of the battlefield—was provided
by the condottieri, who were essentially private military contractors. An Ital-
ian city-state did not hire at the company level, but rather did business with
individual captains, who in turn hired companies of soldiers. The condottieri
were not subordinate to the city-state, but rather to the captain who hired them.
City-states, eager for decisive victories but lacking in effective control, often
watched with frustration while their hired captains engaged in mealy-mouthed
battles, each unwilling to commit to a decisive engagement. The lack of political
unity—or more to the point, the political body’s ineffective control over force—is
the origin of Machiavelli’s frustration.”’

Condottieri companies varied widely in their organization, but they were still
organized. Michael Mallett (1974) outlines the organization of several such com-
panies; large companies were divided into squadrons, each led by a squadriere
with a contract with the condottiere; leading fighters in a squadron had their
own contracts with the squadriere. The condottiere had his own squadron, known
as the casa, and this was typically the largest and best-equipped. For example,
mid-1400s condottiere Tiberto Brandolini had a company of 400 lances and 300
infantrymen; these were divided into his casa and seven cavalry squadrons and
eight infantry companies. His casa included men-at-arms, light cavalry, his mas-
ter of the horse, his marshal, his chaplain, two cooks, six chancellors, trumpeters,
a billeting officer, and a munitions officer (p. 108). So, a given company was
well-organized, but it did not fall into the same integrated command structure.

Over time, cities became more responsible for their own force; Italian armies
included large, city-provided infantry forces supplemented by hired cavalry.
These forces were folded into the city-state’s own force structure. So-called lanze
spezzate—"broken lances”—were cavalrymen who had broken away from their
condottiere and joined the city-state’s army. The famous reforms of Charles VIII
of France helped complete the transition from condottieri to city-state armies.

“Michael Howard (1976, Chapter 2) claims Machiavelli makes too strong of a point against the
condottieri, but he also describes many of the same problems.
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Our machinery allows for disjointed force structures like those of the condot-
tieri system. We have not required that the force structure be connected; that
is, we have not required that there be a single unit that commands all others.
This is a feature, not a bug;; it allows us to model the condottieri system as a force
structure. We can differentiate Caesar’s legions from the condottieri companies
by requiring that the force structure have a single unit that commands all others,
a property we will call unity of command. We begin by formalizing a command
chain in a force structure.

3.2 Definition (Command Chain)
A command chain from force unit v to force unit v,, is a sequence (v, ...,v,) €

n+l .
V"7 of force units where
Uy U0y 2+ 201 2 0.

In case there exists a command chain from v to v,,, we say that vy commands v,,.

For example, perhaps vy is a brigade, v; a battalion, and so on down to v, a
fireteam. In this case, the brigade commands the fireteam.”

Machiavelli’s lamentations had something to do with the lack of a command
chain; in particular, he wished that the force embodied what we will call unity
of command. Let us formalize this.

3.3 Definition (Unity of Command)

A force structure (V, <) has unity of command just in case there exists a force unit
U, € V such that there is a command chain from v, to every other unitin V.

Figures 9 and 10 both feature unity of command, with the cohort and the legion,
respectively, serving as the root of the tree. One can spoil the property by
removing a single arrow from either diagram. Note that v, might represent an
individual like a general, a queen, or a president; it just as easily can represent a
committee, a consulate, or a Senate. Unity of command is a feature of the force
structure that ensures that all force units are ultimately subordinate to a single
unit. In graph-theoretic terms, this means that the Hasse diagram for the force
structure is a rooted tree, which is a useful concept in graph theory.

BHere questions of reflexivity arise. If the subordination relation is reflexive, then the brigade
commands itself, providing a command chain of length zero. If the subordination relation is not
reflexive, then the brigade does not command itself. We will consider chains of length zero to be
valid command chains, but this is rather trivial.
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To this point, we have considered both unified command structures like
the Roman legion and disjointed command structures like the condottieri. It is
interesting to wonder whether these can be considered as special cases of a
more general class of force structures. One way to do so—among a great many
that spring to mind without much effort—is to attach to each subordination
relation a weight that represents the degree of subordination, the quality of the
command, or some other relevant feature. The resulting structure is a weighted
force structure, which we encode with the following construction.

3.4 Construction (Weighted Force Structures)

A weighted force structure is a category enriched in the symmetric monoidal preorder
Command := ([0,1], <, %,1).
Explicitly:
1. the objects of the category are V, the set of force units;

2. for each pair of force units vy, v, € V, the hom-object Hom (vq, v;) € [0,1] is
the strength of command from v, to vy;

3. for each force unit v € V, we have Hom (v, v) = 1;
4. Hom (vq, v5) > 0 implies Hom (v,, v1) = 0; and
5. for enrichment, we require
Hom (v1,v,) X Hom (v,,v3) < Hom (01, v3)

fOI’ all v1,v,,v3 € V.

The strength of command is a measure of the degree of subordination between
two force units. The strength of command is a number between 0 and 1, where
0 means that the two units are not subordinate to one another and 1 means
that one is completely subordinate to the other. The enrichment requirement
demands that the strength of command decays as we add more layers to the
organizational structure: a command directly from v, to v; is stronger that flows
from v, to v3 via some intermediary v,. The difference between Hom (v1, v3)
and Hom (v, v) X Hom (v;, v3) is a measure of the friction in the command
chain, and it is a key part of the structure of the force. In this structure, a
force structure with unity of command might mean that there is a single force
unit v, such that Hom (v,,v) = 1 for allv € V and Hom (v,v,) = 0 for
all v # v,. Conversely, a disjointed command structure might mean that
there exist multiple units vy, ..., v, such that Hom (vi, vj) = 0foralli # j.
The construction accommodates the full variety of intermediate cases where
subordination ties are stronger or weaker.
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3.2 Structured Forces

We have considered the structure of force in terms of a partial order on a set
of force units, but we have not yet considered the content of those units. A
force structure that includes one soldier per unit is quite different from one
that includes two per unit, and each of these is different from one that includes
one soldier and one tank per unit. In other words, the mere fact that two force
structures share similar skeletons does not mean that they are the same. To that
end, we now load the force units with force content.

3.5 Primitive (Structured Forces)

There is a map
. *
assign:V — M;,
which assigns a configuration to each force unit.

A structured force is a triplet (V, <, assign), where (V, Q) is a force structure and
assign is such an assignment map. The set of all structured forces is denoted

F* (M;) c {(V,<,assign: V > M) | (V,Q) € F}.

Remarkably, a structured force is a kind of decorated graph, just like a force
molecule or configuration: instead of having atoms for vertices and functional
relationships for edges, we have force units for vertices and subordination
relations for edges. The same logic and notion of structure applies to all three,
so the intuitions honed in previous sections continue to apply.

In a sense, F* (]MZ) represents the final summit of the mountain: it is
nothing short of the set of all ways to put together an organized force out of
pieces of force content comprised of the elements of force. One cannot help
but be overwhelmed by F* (M7 ): humiliating in its complexity, startling in its
comprehensiveness, beautiful in its variety, terrifying in its potential. And yet,
the structure we’ve designed for M} will help us understand the structure of
IF* (M7 ). For example, structured forces can be enumerated.

3.6 Proposition (The Set of All Structured Forces)
F* (]MZ) is countable. [Proof ]

This is an immediate conseqence of the countability of / and the countability of
M; (Lemma 2.3). As a consequence of this fact, any topology on IF* (M} ) will
be second-countable, which will prove most useful at the climax of our journey.
But, a few final steps remain before we can fully savor the view from the summit.
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Figures 9 and 10 provide the (V, Q) part of the force structure, but they do
not provide the assignment map assign. We now decorate the force structure
with the content of each force unit, taking a tactical-units approach. Let us first
establish the basic molecule of force content as the legionary, which we will
denote by M € M—that is, each M represents one standard legionary, which
is some connected graph where a SOLDIER is equipped with some appropriate
panoply. By a century we will mean eighty such legionaries,

80
C=M,
i=1
where each M; is a legionary. We relabel the SOLDIER part of M; with the special
label CENTURION, where this recognizes the special role of the commanding
centurion in the century. Thus, for Centuries j € {1,..., 6}, we have
80
assign (Century ]) = U Mj-1)80+i,
i=1
which assigns a set of eighty unique legionaries to each century. This fills in the
smallest part of the force structure, the century, with the appropriate content
of eighty legionaries with a special centurion. Next, maniples are composed of
three centuries. The most straightforward way to proceed is simply to use W
to combine the content of the three centuries, so that Maniple k € {1,2,3} is
assigned the content of three centuries,
2
assign (Maniple k) = t*j assign (Century 2(k — 1) +j).
j=1
This is a simple way to combine the content of the centuries into the content of
the maniples; we will consider another approach in the next subsection. The
cohort is composed of three maniples: for each cohort m € {1, ..., 10}, we have

3
assign (Cohort m) = L—'j assign (Maniple 3(m — 1) + k).
k=1
Finally, the legion is composed of ten cohorts: for each legion n € {I, ..., XIII},
we have
10
assign (Legionn) = L—'_'J assign (Cohort 10(n — 1) + m) .
m=1
This completes the assignment map for the Roman legion when we think of
things in terms of tactical units, which simply combines assign and W in a
Q-respecting way.
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The construction above suggests a general approach for the tactical-units
method of decorating a force structure.

3.7 Construction (Tactical-Units Approach to assigning)

The tactical-units approach to assigning is a method of decorating a force structure
(V, Q) with configurations.

1. Define the bottom units,
bottom:={v € V | Az € V \ {v} such that z < v},
which are the units with no distinct subordinates.

2. Define some primitive assign : bottom — M that assigns a configuration to
each bottom unit.

3. Define the subordination relation sub : V' — P (bottom), which assigns to each
unit the set of bottom units subordinate to it:

sub(v) = {z € bottom | z < v}.

4. Define the assignment map assign : V. — MJ by the formula

assign(v) := H assign(z).

z€sub(v)

Since < is a partial order, the operation is well-defined.

The tactical-units approach is a general method for decorating a force structure
with content from the bottom up. It should be noted here that one could use
some kind of operation other than & to combine the content of the subordinates,
and in particular one could relax Commutativity to retain some notion of order
in the combination. This order would allow us to put the six centurions of a
maniple in a particular order, for example, reflecting seniority and within-officer-
class rank. Similarly, one could attach, as a final step in the construction, a target
configuration to the output of the assignment map, so that the final output
is a function of the bottom elements, but not necessarily directly through w.
Thus, the combination of two separate sets of eighty separate legionaries could
result in a configuration with the legionaries in some specified order, perhaps
reflecting a particular military formation. Surely other similar refinements are
possible, but the basic structure of the tactical-units approach is as described
above. It helps us appreciate the nested structure of force, the boxes upon boxes
upon boxes, the subtle organizational dynamics one might not notice when
scanning the forces standing on either side of a battlefield.
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3.3 Organization is Organized

Little has changed; at the time of this writing, the United States Army takes as
its basic tactical unit the brigade combat team (8.c.T.). Each is organized into
a number of battalions, which in turn are organized into companies. The force
structure for an armored B.cC.T. is given in Table 4.

Trucks
Company Personnel A.v.s L M H Misc
Brigade H.Q.

H.Q. Company 137 4 29 6 0 0
Battalion Total 137 4 29 6 0 0
Field Artillery

H.Q. Battery 233 19 33 10 0 0

Field Artillery (X 3) 91 14 7 1 6 0
Battalion Total 506 61 54 13 18 0
Cavalry

H.Q. Troop 116 17 14 6 0 0

Cavalry Troop (X 3) 94 17 1 1 0 0

Armor Company 63 15 1 0 0
Battalion Total 461 8 19 10 0 0
Infantry

H.Q. Company 177 25 19 5 1 0

Rifle Company (X 2) 137 15 2 1 0 0

Armor Company 64 15 2 1 0 0
Battalion Total 515 70 25 8 1 0
Armor |

H.Q. Company 176 25 19 5 1 0

Rifle Company 137 15 2 1 0 0

Armor Company (X 2) 64 15 2 1 0 0
Battalion Total 515 70 25 8 1 0
Armor 11

H.Q. Company 176 25 19 5 1 0

Rifle Company 137 15 2 1 0 0

Armor Company (X 2) 64 15 2 1 0 0
Battalion Total 515 70 25 8 1 0

91



Trucks

Company Personnel A.v.s L M H Misc
Brigade Engineer
H.Q. Company 85 5 14 7 0 0
Signal Company 35 0 16 4 0 0
Military Intelligence 118 0 20 6 0 10
Combat Engineer I 113 16 5 1 4 8
Combat Engineer II 98 12 4 1 4 17
Battalion Total 449 33 59 19 8 35
Brigade Support
H.Q. Company 85 0 12 9 0
Medical Company 82 8 14 10 0 0
Field Maintenance 118 4 10 20 12 0
Distribution Company 140 0 5 1 o4 8
Field Artillery F.s. 154 5 14 14 21 1
Cavalry F.s. 111 6 7 9 7 1
Infantry F.s. 147 6 12 12 21 1
Armor I F.s. 147 7 12 12 21 1
Armor II E.s. 147 7 12 12 21 1
Brigade Engineer F.s. 141 3 14 14 13 1
Battalion Total 1,272 46 112 113 180 14
Brigade Combat Team Total 4222 437 348 185 209 49

Table 4: Force structure for the United States Army Armored Brigade Combat
Team. “F.s.” denotes a forward support company. “A.v.” denotes the number
of armored vehicles. “L,” “M,” and “H” denote the number of light, medium,
and heavy trucks, respectively. “Misc.” denotes miscellaneous vehicles. Data
courtesy the Congressional Budget Office ( )-

Like legions and corps before them, B.c.T.s reflect the state’s organization of its
force. The brigade is broken into battalions, which are broken into companies;
not shown are even smaller units, such as platoons and squads. Battalions are
assigned their own specialties: infantry, armor, cavalry, field artillery, and so on.
They also receive particularized support from engineer, signal, and intelligence
companies, as well as from medical, maintenance, and distribution companies.
The line from Caesar to Napoleon runs through modern forces, too.
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Personnel (per unit) ~ Cost (per unit)

Unit #  Direct Total Direct Total
Department of the Army
Armored B.C.T.s 12 4,040 16,330 690 3,160
Stryker B.C.T.s 7 4,680 16,670 600 3,060
Infantry B.C.T.s 13 4,560 15,910 580 2,920
Department Total — 140,520 519,480 20,020 97,300
Department of the Navy
Aircraft Carriers 11 3,360 6,600 620 1,470
Carrier Air Wings 9 1,750 4,880 440 1,140
Destroyers 72 350 710 80 180
Submarines 53 200 400 100 190
Amphibious Ships 33 750 1,480 160 360
Marine Infantry Battalions 24 1,900 6,320 200 990

Department Total 158,860 389,360 31,920 95,990

Department of the Air Force

Fighter Squadrons 41 420 1,260 80 270
Bomber Squadrons 3 1,360 4,790 450 1,200
Cargo Squadrons 16 500 1,510 110 330
Tanker Squadrons 28 560 1,920 140 430
Reaper Squadrons 23 380 1,020 70 220
Department Total - 53720 167,410 11,920 37,050
Total - 353,100 1,076,250 63,860 230,340

Table 5: Brigades in the United States Armed Forces. Costs measured in millions
of 2021 dollars.

Like Roman forces, American forces demonstrate a strongly fractal nature: in
2021 the United States Army commanded twelve armored B.c.T.s, each costing
$3.2 billion to maintain—and it is but one of the many units that make up the
United States Armed Forces. Table 5 provides yet another ledger for our grim
accountant to tally, this time in terms of annual costs in both personnel and
dollars. In 2021, the United States Armed Forces coordinated over one million
personnel and cost of over $230 billion to maintain—and this is merely in terms of
the units themselves, not to mention the procurement of equipment, the training
of personnel, and the myriad other costs associated with the military-industrial
complex. Total military spending in 2021 was over $700 billion, or roughly 3%
of the United States’s gross domestic product of $23 trillion.
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The force structure in Table 4 bespeaks two important differences from the
Roman legion.

1. Formal headquarters. The B.C.T. has a formal headquarters, staffed by a
company of personnel. It has one company’s worth of personnel, along
with a light outfit of armored vehicles and light trucks. But observe also
that each of the brigade’s constituent battalions has a formal headquarters,
again staffed by a company of personnel. The table only goes as granular
as a company, but it turns out that modern army companies also have
formal headquarters, and indeed their own tactical units—the platoons—
have headquarters, too. Now, the Roman legion had a headquarters, as
well, and even a lowly centurion might have an assistant. But the overall
structure of the Roman legion suggested that the chain of command was
as much about conveying information and basic tactical coordination as it
was about burueacracy and administration. The development of headquar-
ters is a crucial aspect of the revolution in military affairs. For example,
in his titanic Command in War, historian Martin van Creveld describes
Napoleon’s high-level Imperial Headquarters as itself a highly-structured,
well-outfitted unit broken into independent subdivisions equipped with
large, diverse staffs , pp- 65-78, but the lower-level units were not
so well-structured. This reflected Napoleon’s preference for unified com-
mand and direct access to information, but it also reflected the limitations
of the time: the technology of the day did not allow for the kind of real-time
communication that we take for granted today.

Deeper headquarters structures reflect developments in the officer corps.
Two stodgy classics in civil-military relations, Samuel P. Huntington’s
The Soldier and the State ( ) and Morris Janowitz’s The Professional Sol-
dier ( ) trace the development of the officer corps in the United States
military. Huntington, taking a much longer view, argues that the officer
corps has evolved from a warrior aristocracy to a professional bureau-
cracy; the goal of this development is to ensure that the military remains
subordinate to objective civilian control. Famously, this is handled by
taking the pragmatic mind of the soldier and imbuing it with the quali-
ties of professionalism: expertise, responsibility, and corporateness. The
end result is a force that is more effective not only in combat, but also in
the broader context of civil-military relations. Janowitz paints a much
different picture, arguing that modern officers are less like lawyers and
more like the police: skilled in organizing and administering violence in
the service of the state. In either case, the density of the officer corps is
purpose-driven and reflects the needs of the state.
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Brigade H.Q.

Support H.Q.

> Artillery H.Q. ¢ - - - - - - - - - - Artillery F.s. {———

AN 5 Medical
> Cavalry H.Q. <- - - - - - - - - - - Cavalry F.s. ¢—

KEXN L Supply
> Infantry H.Q. <- - - -------- Infantry F.s. {—f

Y | Maintenance
—> ArmorIH.Q. <----------- Armor I F.s. $——

A"
—> ArmorIlH.Q. ¢ ---------- Armor IT F.5. ¢

N
— Engineer H.Q. ¢ - - - - - - - - - - Engineer F.s. <—

KR

Figure 11: A binary support relationship. Solid lines represent superordination, while dashed
lines represent support. Black nodes represent other companies.

2. Formal non-command relationships. The B.c.T. has a complete battalion
dedicated to support. Some of its companies provide general support
to the entire brigade, such as the Medical Company, while others pro-
vide specialized field support to particular combat battalions, such as
the Cavalry r.s. Company. The development of such formalized sup-
port relationships reflects an underappreciated aspect of the revolution
in military affairs—namely the revolution in military logis’cic:s.44 This less-
appreciated revolution has been the subject of a spate of recent research
(eg.,? , ), much of it inspired again by a canonical treatment
due to van Creveld ( ), this time his Supplying War. Van Creveld is
unimpressed by the role of hyper-organized logistics in the outcome of
wars, and indeed he argues that the ability to improvise is a key aspect
of logistical success. By linking combat units to support units, the B.c.T.
ensures that the right supplies are in the right place at the right time.
This suggests that a force structure ought to include relationships that are
not strictly about command and subordination but also about support,
training, joint operations, the sharing of resources, and so on.

*Here we mean the part of logistics pertaining to the delivery of supplies, rather than their
procurement. This latter aspect is also important and is taken up in a companion paper.
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The first of these differences suggests a different interpretation of décor
where higher-level units are concerned.

3.8 Construction (Strategic Approach to assigning)

The strategic approach to assigning is a method of decorating a force structure (V, Q).
Bottom nodes are interpreted as the largest units without formal administration; each is
assigned a configuration meant to represent the unit’s tactical capabilities. Those units
higher in the chain of command are assigned configurations representing administrative
staff. The assignment map is simply the function giving bottom units their tactical
capabilities and nonbottom nodes their staff configurations.

The strategic approach is a general method for decorating a force structure
from the top down. It is a more modern approach, reflecting the development
of formal headquarters and support relationships as evidenced in the force
structure in Table 4. The reader is advised to use the tactical-units approach to
aggregate bottom units to some desired level of granularity, and then to use the
strategic approach to populate the various administrative units.

The second of these differences is the more subtle, and it is sufficiently
beautiful that it’s worth pausing to appreciate. It is not difficult to think about
binary non-command relationships in the context of a force structure—the field
support companies in Figure 11 are a good example. But some relationships are
far more difficult to visualize.

1. Consider how we might model the Medical Company’s support relation-
ships, where there is not a dedicated target company (as was the case for
field support companies) but rather a set of companies that might need
medical support. We could certainly reduce the problem to a set of binary
relationships, but this would be a poor model of the actual relationships.
For example, we would not immediately have information at hand about
how overtaxed the Medical Company is, as we’d need some operation for
adding the individual burdens of support.

2. More ambitiously, consider what’s going on ata given military base, where
the base command might not be directly involved in the chain of command
for the units stationed there. What is the base commander’s relationship
to the units? What is the relationship between the units themselves? What
of the base commander’s subordinates, who presumably serve a variety
of higher-order functions themselves?

It is not hard to consider other examples, but the point is that the relationships
in a force structure are not always so simple as the chain of command. And of
course, various sorts of relationships can be combined in a single force structure.
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The problem posed above suggests the need for a more general approach to
decorating a force structure, which requires yet another layer of abstraction.

3.9 Primitive (Non-Command Relations)
There is a countable family

Rel == {R'}""

of non-command relations, where each R' is a directed hypergraph on V—i.e.,
R" = {Ri = (Di, Ci)}ier

where @ € Dj,C; €V are the domain and codomain of the ith hyperedge for relation
of sort r € N, and I" is the finite index set of hyperedges in R'.

The non-command relations are a general method for decorating a force structure
with relationships that are not strictly about command and subordination. A
few examples might help to illustrate the concept:

1. The Medical Company’s job is one-to-many, as it must support a variety of
units, so that
D™ = {Medical Company},
C™! = {the various units it supports} .

One could imagine enriching the binary support relationships for field-
support companies in a similar way:.

2. The base commander’s job is many-to-many, as the base commander might
coordinate with commanding officers, so that one relationship might be

Dfase = {Base Commander, Commanding Officer 1},
C?ase = {the various subunits in Unit 1} ;

and another might be

D5 = {Base Commander, Commanding Officer 2},
Cgase = {the various subunits in Unit 2} .

This seems especially useful for coalition forces, where commanders might
need to coordinate with a variety of other commanders. It is not hard to
imagine a laughably-complicated org chart for a coalition force, where
the base commander is coordinating with a variety of other commanders,
who are in turn coordinating with their own subordinates. The reader is
encouraged to sharpen some crayons—a lot of crayons—and draw one.
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3. Of course, one could model non-directed relationships, as well, and this
can be done at any desired order. A given three-way relationship—say,
three units that are coordinating on a joint operation—might be

(DJomts/ C1°1nt3) = ({v1, 02,03} ,{v1,02,0v3}),

suggesting that the relationship is fully characterized by an undirected
ternary relationship between the three units. In case each R; features
|Ir| =1and |Dlr| = |C,r| for all € IN, we say Rel is undirected.

4. Remarkably, the construction as stated provides an inexpensive theoretical
way to parameterize not just the relationships in question but the units
themselves. After all,

(D', C"*) = ({0}, {o})
is a perfectly valid non-command relationship, and it is not hard to imagine
that the units themselves might be decorated in this way. For some
parameter 0, € O, featuring |®,| < Ny, we might choose a single
hyperedge Rled” for each v € V. This indeed provides a natural way
to parameterize the units themselves by including one or more such
hyperedges in Rel.

These examples should help provide a sense of the power of the non-command
relations: we have at our disposal a countable family of relationships, each
potentially of a different sort and density, that can be used to decorate a force
structure in a variety of ways.

Let us formally define the set of all possible relation families for a given V.
The set of hypergraphs on V is

Hy = {(D;, Ci)ie; |0 < |I| < Xgand @ € D;,C; S nforalli € I};

since V is finite, so too is Hy, as there are only finitely many ways of pulling
out two subsets of V. The set of all possible non-command relation families is
then given by

2y ={{RY |R ey forallr e Nf = N =N 2 N,

In words, we have shown that the set of hypergraphs on any V is finite and thus
the set of ways of giving each natural number a hypergraph is countable. Since
V was chosen arbitrarily, we may conclude:

3.10 Lemma (Countability of Non-Command Relations)

For all finite V, the set of non-command relations on V' is countable.

Wonders never cease.
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We can now define what we mean by an org chart.

3.11 Construction (Org Charts)

By an org chart on V we mean a triplet
OrgV = (V, @, Rel) ’

where (V, Q) is a force structure and Rel € Zy is a non-command relation family.

The org chart is a generalization of the force structure, one that includes rela-
tionships that are not strictly about command and subordination. It can encode
more detailed unit- and relation-level responsibilities, not to mention the wide
variety of logistical, support, informational, and other relationships that are
necessary for a modern force to function. The org chart is a powerful tool for
understanding the structure of a force, and it is a natural way to model the
relationships that are not strictly about command and subordination. Indeed,
we’ve even seen that it can point us toward parameterization on deeper levels.

Conceiving of a structured force as a set of units, a subordination relation,
an assigment mapping, and a constellation of non-command relationships, we
arrive at the following.

3.12 Corollary (The Relational Variant of Structured Force is Countable)

The set of all structured forces with non-command relations,
Fr (M}) = F* (M]) x Zy,

is countable.

This is a corollary of the countable nature both of structured forces IF* (]Mz)
and of non-command relations Zy, which we established in Proposition 3.6
and Lemma 3.10, respec’cively.45 The countability of the structured forces is a
remarkable fact, given the complexity of the force structure: we now have a

®The reader can rest assured that this is the final countability result in this manuscript. This
is not a manuscript about countability but rather about force, but it happens that countability is
a useful property for cheaply obtaining second-countability in the spaces we are considering. It
also happens to be beautiful that countability survived the trip:

L s> My~ My~ F* (M7 )~ FR (M),

or in words, from elements to molecules to configurations to structured forces to structured forces
with non-command relationships.
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complete theory of military configuration and organization that is easy to work
with. This is the force-maker’s possibilities space, and it is a beautiful thing. We
now turn our attention to how she navigates this space by turning one structured
force into another, a process running parallel to the conversion of configurations.
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3.4 Restructuring Forces

We have constructed a theory of structured forces where some set of units is
organized by both a chain of command and a set of non-command relationships;
moreover, each of these units is assigned a configuration from M} . We now turn
our attention to how to turn one of these structured forces into another, first with
respect to the org chart and then with respect to the configurations. Though
still “elementary” in the sense that they do not depend on operations beyond set
theory, these operations are more complex than those for configurations. Even
the simplest-possible operations are not trivial:

3.13 Primitive (Elementary Restructuring Operations for Units)

Given a structured force
(Vo, Eo, Rely, assigny) € Fg (M7),

where V) is the initial set of units, E is the edge set associated with the initial chain of
command, Rely is the initial non-command relation family, and assign is the initial
assignment map, we define two elementary unit restructuring operations on V:

1. Unit Addition at v: for v ¢ V,, set
Vi =V u{v},
E, == E,,
Rel; := Rely, and
assign; := assigny U {(v, UM)} for some L‘_"JM e M;; and

2. Unit Deletion at v: for v € V), set
Vl = VO \ {U} 7
E;=Eo\ ({(v,w) |w € Vo} u{(w,v) |w € Vy}),
Rel;  to be discussed in the sequel, and

assigng := assigng \ {(v, assigny(v))}.

Unit Addition is similar to Vertex Addition for force molecules (Definition 2.11),
so we need not say much about it; the original intuitions ought to carry over.
It simply adds a new unit and assigns it some configuration from M;. The
resulting structured force is simply the old one plus some isolated unit with some
name and some configuration. The output, though potentially still incomplete
regarding command and non-command relationships, is a useful intermediate
step in a micro-stylized restructuring process, a sequence of steps so small as to
appear meaningless, the operational atoms of the verb “to restructure.”
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But Unit Deletion is a different beast. To be sure, it is not very difficult
to remove a vertex from a graph, nor even to remove its contributions to the
subordination relationships. This is for two reasons:

1. Subordination is a binary relation. The statement “v; < v,” encodes all of
the information we need to know about the subordination relationship
between v; and v,, and (what is more) this relationship encodes no addi-
tional meaning one could have gotten for unrelated “v; < v,” statements.
These statements all provide independent data about the subordination
relationships in the force structure.

2. Subordination is a partial order. Since the subordination relation is a partial
order, removing a vertex and all the edges it touches produces another
partial order. In other words, the set of structured forces is closed under
the removal of a unit and all its incident edges.

But the non-command relationships are a different story. Recall that a given
Rel is a countable family of hypergraphs, each a finite set of directed multi-unit
relationships. One hypergraph might be labeled “M” and it would contain
each of the myriad relationships between the myriad Medical Companies and
their myriad charges. Suppose we planned to remove one of those Medical
Companies, call it i. Suppose that Medical Company i coordinated with an
Intelligence Company to support an Infantry Company, so that one of the
hyperedges in the Medical Company’s hypergraph was

R?A = ({Medical i, Intelligence} , {Infantry}) € RM € Rel.
How do we proceed? Three possibilities suggest themselves:

1. Remove RM from Rel: perhaps removing a single unit from a single hy-
pergraph is enough to warrant scrapping all information once the unit is
removed. This would suggest a deep and nuanced web of relationships
among the relationships in the Medical Support substructure.

2. Remove RI,'VI from RM: perhaps removing a single unit is “small” in the
grand picture but important enough that no relationship that had included
that unit should be retained. In this motivating example, we’d remove
RM, since the associated Intelligence-Infantry relationship need not feel
“adjacent” to the original one.

3. Remove Medical i from R?A: or, if this relationship does, in fact, feel adjacent,
we might remove only the unit’s contributions to the hypergraph, leaving
the rest of the simpler-order relationships intact.
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Frankly, all three of these possibilities seem to have their place.

1. The first is a sort of nuclear option, where the removal of a single unit

is enough to warrant the removal of all relationships that had included
that unit, even seemingly-unrelated relationships that are same-in-kind.
It could work here were the force-maker occupied with how evenly-
distributed the support burden was across the Medical Companies. This
option seems most appealing when considering the removal of a high-
level command web in a coalition force, where the removal of a single unit
might warrant the removal of all relationships that had included that unit,
even if they were with other coalition forces. Everything is different in the
absence of that unit, and the removal is large in a global sense.

. The second, a predictable middle ground, is where the removal of a single
unitis enough to warrant the removal of all relationships that had included
that unit, even if other units remained to maintain the relationship. This
is certainly the most relevant option for our motivating example, since the
resulting Intelligence-Infantry relationship does not feel adjacent to the
original Medical-Intelligence-Infantry relationship. The removal is large
in a local sense but small in a global sense.

. The third is a scalpel, where the removal of a single unit is enough to
warrant the removal of only the relationships that had included that unit,
leaving the rest of the relationships intact. This is the most appealing
option when the force-maker is concerned with the overall structure of
the force, and the removal is small in a local sense.

As such, we encode all three possibilities in the definition of Unit Deletion.

3.14 Primitive (Classes of Unit Deletion)
We define three classes of Unit Deletion for unitv € V:

1. Global Deletion: remove all relationships that had included the unit,

Rell = {RS € Relo | ﬂR:O € RS such that v € DITO U C;O},

2. Hyperedge Deletion: remove all hyperedges that had included the unit,
R1:={Rjy € Ry |v ¢ Djyu Cjo} forall r € N; and

3. Surgical Deletion: remove the unit from all hyperedges that had included it,
Ri = {(Dio \ {0}, Cio \ {v}) | Rig € Ro} forall r € N.

Thus, our technical conundrum has proven substantively rich.
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Primitive 3.13 provides simple generalizations of vertex addition and dele-
tion to the structured forces. They are elementary in the sense that they do not
use any other operations save for those made available from basic set theory.
We also need to generalize edge addition and deletion, both for subordination
relationships and for non-command relationships. We begin with the former.

3.15 Primitive (Elementary Restructuring Operations for Subordination)

Given a structured force
(VO/ EO/ RelO/ aSSignO) € ]FE (]MZ) ’
we define two elementary subordination restructuring operations on E:

1. Edge Addition at (v, w): forv,w € Vo with (v, w), (w,v) ¢ Eo, set™

Vl = VO/
Ei = (Eou{(v,w)})"
R911 = Relo, and

assign; = assigng; and

2. Edge Deletion at (v, w): for (v, w) € Ey, set
Vl = VO/
Ev = (Eo\ {(v,w)})’
Rel; := Rely, and

assignq := assigng.

Edge Addition is a simple generalization of the vertex addition operation, and
it is a natural way to add a new subordination relationship to a force structure.
The resulting structured force is simply the old one plus a new subordination
relationship, where particular care is taken to ensure that the output remains
a partial order. Edge Deletion is a simple generalization of the vertex deletion
operation, and it is a natural way to remove a subordination relationship from
a force structure; again, we take small pains to ensure that the output remains
a partial order. Overall, these two generalizations pose no new challenges, and
they are a natural way to extend the elementary edits to the structured forces.
Little more need be said about them, but they remain useful tools in the kit.

40 ere we use the notation ET to denote the transitive closure of a relation E—i.e., the
smallest transitive relation containing E. This ensures that the new edge is added in a way that
respects the existing subordination relationships. Defining Edge Addition at (v, w) only when
(v,w),(w,v) ¢ Eqensures that the output satisfies the antisymmetry property of a partial order.
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Next, we generalize the elementary edits to the non-command relationships.
The nuances discussed in the run-up to Primitive 3.14 will persist, and the
intuitions developed there will carry over.

3.16 Primitive (Elementary Restructuring Operations for Non-Command)

Given a structured force
(Vo, Eo, Rely, assigng) € Fg (M; ),
we define eight elementary non-command restructuring operations on Rel:
1. Global Addition of R: set

Rel; := Rely U {R};
2. Hyperedge Addition of i at r: set

Rel; == {Ry € Rely | s # r} U {Ro U {(D;},C;i)}};
3. Surgical Domain Addition of v at (7, i): set

Rel; = {Ry € Rely | s # r} U {Ry U (Djy U {v},Cio)};
4. Surgical Codomain Addition of v at (7, 7): set

Rel; == {Ry € Rely | s # r} U {Rq U (Diy, Cip U {v})};
5. Global Deletion of R: for some R € Rely, set

Rel; := Rely \ {R};
6. Hyperedge Deletion of i at r: set

Rel; == {Ry € Rely | s # r} U{Rg \ {(Di, Cio)}};
7. Surgical Domain Deletion of v at (7, 7): set

Rel; = {Ry € Rely | s # 1} U {Ry U (Djy \ {v},Cio)}; and
8. Surgical Codomain Deletion of v at (7, i): set

Rel; == {Ry € Rely | s # r} U{Ry U (Diy, Cio \ {v})}-

These are similar in spirit to the edits we considered when deleting a unit, but
here the motivations are institutional rather than unit-level. They provide a flexi-
ble set of ways to restructure the myriad possible non-command relationships in
a structured force, including nuclear, middle-ground, and scalpel-like options.
Since these relationships need not follow any pattern—say, the antisymmetry of
a partial order—we have more freedom in how we edit them.
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Primitives 3.13 to 3.16 provide the tools required to manipulate org charts;
one can imagine the force-maker at her pin-board, moving units around, adding
and removing relationships, and generally reorganizing the force. Any org chart
can be obtained from any other via a finite sequence of these operations. But
though the force-maker might be working up a sweat moving pins around, the
soldiers have yet to stir from theirbarracks. Save for mustering up a configuration
for a new unit (or firing the staff of a deleted unit), the force-maker has yet to do
anything that would affect the soldiers themselves. We now turn our attention
to “relabeling” the configurations in a structured force. Where once relabeling
represented the change of one element of force to another—say, a spear to a
sword—it now represents the change of one configuration to another—say, one
combination of personnel, armored vehicles, trucks, and so on to another. At the
level of the structured force, these are the atoms, and the variety of configurations
is elemental in the same way that the variety of elements was.

For all the nuances implicit in such wide varieties of configurational reassign-
ment, the graph-theoretic character of the structured forces provides starting
points for the discussion. Indeed, reassignment could be quite easy:

3.17 Primitive (Localized Reassignment)

Given a structured force

(Vo, Eo, Rely, assigng) € Fg (M7 ),
we define the localized reassignment operation by:

assign; := (assigng \ {(v, assigny(v))}) U {(v, HM)}
for some v € Vyand |t M € M].

This is a simple operation that changes the configuration of a single unit. It is
“local” because it introduces no new information or resources from elsewhere
in the force structure: all we’ve done is gone through the conversion process

assigny(v) 2, assign;(v),
¢ ¢~ CS (Hom (assigny(v), assign((v))),

where ¢ is the chosen process from those availble for converting assigny(v) to
assign;(v). In this sense, localized reassignment is less about reassignment and
more about converting configurations without any configurational input from
the rest of the force. It is thus quite useful for small changes, say in preparedness,
organization, or equipment, that do not affect the rest of the force. We’ve not
yet mentioned the costs of restructuring, but it stands to reason that the cost of
such a conversion is simply (cost o ¢) (assigny(v), assign;(v)).
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As such, we might consider more nuanced operations involving more than
one unit. It will be easier to think things through if we define a few operations
on force configurations. First comes a notion of subconfigurationhood, which
we think of moleculewise.

3.18 Definition (Subconfigurationhood)

Given two configurations

nq ny
M= (M and (4 Mo = [+ M e M],
i=1 i=1
we say that |+ My is a subconfiguration of [+ My, denoted || M < |4 M, just in
case there exists an injection v : {1,...,m1} = {1,..., 1y} such that M; = M,y for
alie{1,...,m}"

In words, one configuration is a subconfiguration of another if the first can be
obtained by removing some of the molecules from the second.”® The molecules
in the second might not be in the same order as those in the first, but they are
the same molecules. Recall from Primitive 2.1 that W is commutative up to
isomorphism, so the case where the injection witnessing subconfigurationhood
is a bijection is not particularly interesting; we already had [+) M; = [+) M, there
simply from the commutativity of ©.” The definition is essentially a shortcut
for the more primitive operation of projecting a configuration onto a subset of
its molecules, and it is useful for the more complex operations we will consider.
Predictably, subconfigurationhood is a preorder on IM; .

3.19 Proposition (Subconfigurationhood is a Preorder)

Subconfigurationhood is a preorder on M;.” [Proof .]

This is a simple result that follows from the definition of subconfigurationhood;
it is useful to have this result on hand, as (for example) it allows us to speak of
monotone functions on IM] with respect to subconfigurationhood.

Since any function defined on the empty set is (vacuously) injective, the empty configuration
is a subconfiguration of any configuration.

*Observe that we require only moleculewise isormorphism (Remark 1.4), meaning that the
structure is the same but the order in which the atoms are declared might differ.

*The definition of subconfigurationhood is a bit more restrictive than mere subgraphhood,
where the only requirement is that the subgraph is a subgraph of the supergraph. Here we
demand that the molecules are unaffected by the reordering of the atoms, which is a stronger
condition more in keeping with the spirit of the theory.

*OIn fact, in the proof it is shown that < is a partial order on M} up to permutation of the
molecules, which is in keeping with the spirit of [¥].
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Pressing on will require a few more definitions.

3.20 Construction (Counts and Intersections for Configurations)

For a force molecule

n
L"j M = U M; € Mz
i=1
and a molecule M € M|, we define the strict and lax counts of M in (¥ M by
#o (M,Lﬂ/\/t) =|{i en|M; =M}|, and

(M M) = ) #s(M M),

M'e[M]

where [ M] is the equivalence class of M under the isomorphism relation for molecules.

We also define the intersection of [+ M; and [+) M, by
min {# ((M], 1 M), # ([M], [ M2)} times

HmialHMme= |4 My wM
[MIeM; /=

where M is some representative of [ M ].

The intersection of two configurations returns a new configuration that contains
the molecules that appear in both configurations. A few quick matters of fact:

1. @ is commutative up to isomorphism of molecules: since min is commutative,
the same number of representatives from each equivalence class will
appear in the intersection, but there are no guarantees that the same
representative is chosen across the two calls to m.

2. The empty configuration is the identity for @: since the “min” operation
defining intersection always returns 0, the empty configuration is the
identity for M.

3. The intersection of a configuration with itself is the configuration: since the “min”
operation defining intersection always returns the exact number of times a
molecule appears in the configuration, the intersection of a configuration
with itself is the configuration.

4. Subconfigurationhood and intersection: if [ My < [ M,, then [ M; @
t"J M2 = U Ml.

These all mimic set intersection, with only a little additional care about the
ordering of the atoms or of the molecules.

108



Just as we needed to transport set intersection to its configurational variant,
so too must we do the same for relative complement. We want an operation that
removes those elements one set shares with another.

3.21 Construction (Relative Complement for Configurations)
We define the relative complement of [+) M in [+ M, by

max {#, ([M], ) M2) = #, ([M], [ M) , 0} times

UMz\U/VH‘: U Mwy-.cw M
[M]el M] /=

where M is some representative of [ M ].

Once again, the set complement is transported to the configurational realm,
where again the only fidelity lost regards the order of atoms in molecules or
molecules in configurations, both of which we’ve chosen to ignore.

These simple operations suffice to define a more complex operation that
allows the force-maker to reassign molecules from one set of units to another.
We now introduce the powerful operation of reassignment, which allows the
force-maker to move molecules from one set of units to another, neither creating
nor destroying them, spreading a fixed amount of force icing across a fixed
number of forcecakes (arranged in some fixed order).

3.22 Primitive (Reassignment)

Given a structured force (Vi Eg, Rely, assign,) € Fg (]MZ ), we define the the
reassignment operation by:

1. Choose the Units Involved: choose some Vs S Vyand Vi € V,;

2. Melt the Sources: choose some (assigny (vs)),, ev, such that assign; (vs) <
assigng (vs) forall vg € Vg;

3. Partition the Residue: choose a sequence (pad; (v1)),, ey, such that

[+) pach (vr) = [+) assigny (0.) \ assien; (v.),

vreVr vs€Vs

i # j = pad, (v;) @ pad; (Uj) = @; and

4. Reassign: set

assign; (vs) = assign, (vg) forall vg € Vs,

assign; (vr) :

assigng (vr) W pad; (vr) forall vy € Vr.

This definitions packs a whallop, so we discuss some details here.
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In words, the reassignment operation is simple: we choose some units to
donate molecules and some units to receive them, we remove some (or all) of
the molecules from the donating units, and we divide the removed molecules
among the receiving units. We ignore the path the molecules take from their
old home to their new one, focusing only on the before-and-after configurations
of the units. In the simplest case, we have Vs = {vs} and V1 = {vr}, and we
simply transfer some of the molecules in the configuration assign, (vs) to the
configuration assigng (vr). In the most complex case, we have Vg = Vi =V,
and all units both donate and receive new molecules. Any intermediate level
of complexity is possible, and this can occur for any subconfigurations of the
units, partitions of the residue, and so on. Indeed, the only thing that unifies
this wide set of possibilities is the way the resource constraint is derived and
enforced. The force-maker can only reassign the molecules that are available,
neither creating nor destroying them. This is the essence of reassignment, the
bridge linking all these disparate islands, and so often the tension motivating
real-world force-makers to restructure their forces in the first place.

Reassignment represents a substantively-distinct sort of operation on the
structured forces than its localized counterpart, since it involves the movement of
resources from one set of units to another. Localized reassignment is the sort of
thing we tinkerers of the laws of physics might do to evaluate a counterfactually-
possible world, while reassignment is the sort of thing a real-world force-maker
might have to do to reorganize her force. She faces a constraint, namely the
equality of the total amount of force in the source and target units, and she
must respect this constraint in her reorganization. If we inspected her work,
it’s true that we tinkerers could generate the same output from the same input
via a well-chosen sequence of localized reassignments alone. Nevertheless,
the reassignment operation is a more natural way to think about the process
of reorganization, and indeed it deserves to be thought of separately from its
localized counterpart. Another way of saying the same thing: were we to think
about the costs involved in the same reorganization via different operations,
would we think in the same terms? Unitwise localized reassignments is a matter
of iterative force conversion, so the terms of the conversation would transpire
in the structure of Z. Genuine reassignment, on the other hand, is a matter of
moving resources around, so the terms of the conversation might transpire using
new concepts—or might take place between different sets of the force-maker’s
underlings. In other words, the question goes beyond the mere “but the costs
are different” to the more nuanced “but the costs are conceived of differently,
and potentially may not be directly comparable.” This is a subtle and rich vein
of thought, and so we will leave it to marinate for a while; we will define a new
cost calibration device and a linkage between it and = in the next section.
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By now it is hoped that the idea is clear: we can define a wide variety
of elementary operations on structured forces that allow the force-maker to
restructure her force. Surely those listed here are not exhaustive, but they are a
good start—at minimum, they are sufficient in the sense that any structured force
can be turned into any other by way of a finite sequence of these opera’cions.51
In other words, we have the tools at our disposal to restructure the force in
any way we see fit. But there exist a wide variety of other operations that the
force-maker might wish to perform, many of which involve clever combinations
of the operations we have already defined. For example:

3.23 Construction (Merging and Splitting)

Given a structured force (Vy, Eg, Rely, assigng) € Fr (IM] ) we define unit merging
and splitting as follows:

1. choose some V3 € Vi and V,py, such that V., N Vy = @;
2. apply Unit Addition at V.,

3. apply Reassignment from Vy, to V., in such a way that assign, (v,y) = @
forall vgg € Vg

4. apply Unit Deletion at V,yy; and then

5. optionally, apply some combination of Edge Addition and the non-command
restructuring operations of Primitive 3.16 on units in V., to achieve some
desired structured force.

This is a simple example of a compound restructure, one that involves a combina-
tion of the operations we have already defined. In case |V 4| = 1and |View| > 1,
this is indeed a “split:” the resources in one unit are divided among multiple
units. In case |Vyq| > 1 and |View| = 1, this is a “merge:” the resources in
multiple units are combined into one. Intermediate cases are also possible, and
the force-maker can use this operation to achieve a wide variety of restructures.

*IThis is stated without proof, but it is a simple consequence of the fact that the structured
forces are finite graphs with decorations hailing from a countable set. As a heuristic proof:

1. repeatedly apply Global Deletion on the source force until Rely = @;

2. repeatedly apply Local Reassignment on the source force until all units have been assigned
the empty configuration;

3. repeatedly apply Vertex Deletion on the source force until Vy = @, which also ensures
Eg = o;

4. repeatedly apply Vertex Addition until the target force is reached; and

5. repeatedly apply Edge Addition and Global Addition until the target force is reached.
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More elaborate procedures are possible, such as the following example: a
repopulating operation that, with as much generality as possible, changes the
configuration of the force within the confines of a fixed org chart.

3.24 Construction (Repopulating)

Given a structured force (Vy, Eq, Rely, assigng) € Fg (M} ) we define repopulating
as follows:

1. apply Unit Addition to include two units, Ugiscara and Uiject, €qUIPPING Vgiscard
with the empty configuration and vjyjeey with some (¥ Miyjoet € M;;

2. apply Reassignment with Vs = Vi, V1 = {Ugiscara }, and assigny (Vgiscard) = 9;
3. apply Unit Deletion at Ugjscang;

apply Reassignment with Vs = {Vjyjeet } and Vp = Vy;

SR

apply Unit Deletion at vjyjec; and

6. optionally, repeatedly apply Localized Reassignment to convert the assigny(v) &
pad; (v) to a target configuration.

The repopulating operation has the potential to perform an exhaustive overhaul
of a given org chart’s contents. The org chart is augmented with two temporary
units, one to discard old resources from the force, the other to inject new ones.
Each unit donates resources to be disposed to the discard pile, which is then
discarded, and each unit receives resources from the inject pile, which is then
discarded, as well. After, the new recruits can be folded into their new home
unit’s molecule via a round of conversions. This is a powerful operation that
allows the force-maker to completely reconfigure her force, and it is a good
example of the sort of complex operation that can be built from the elementary
operations we have defined.

These two examples illustrate the wide variety of operations that the force-
maker can perform on her force. Just as with conversion processes, the graph-
theoretic structure of the structured forces provides a framework for thinking
about these operations, and the force-maker can use these operations to restruc-
ture her force in any way she sees fit. However, the wide array of sequences we
can build from these operations suggests that the force-maker might need some
way to reason about them—again, this runs parallel with the way she reasons
about the conversion of configurations. As such, we will again need a general
structure putting the restructuring processes at the fore of the force-maker’s
mind, one that contains these elementary processes, and those of its ilk, as its
atoms—i.e., a categorical structure.
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We therefore arrive at the mother of all structured forces.

3.25 Construction (Structured Forces of Restructuring)

We construct the category of structured forces StructForceg; (m?) as follows:
1. the objects are the structured forces Fg (M} );
2. the morphisms are restructuring operations; these include

(a) the primitive operations of Primitives 3.13 to 3.17 and 3.22 and Construc-
tions 3.23 and 3.24; and

(b) the impossible restructuring X, which exists for all pairs of structured forces;
3. the identity morphisms are the do-nothing operations; and
4. composition of morphisms is by concatenation of edits, along with
Xop=X=poX

for all restructuring operations p.

Given two structured forces
Fo := (Vy, Eg, Rely, assigng) and Fp = (Vy,Eq, Rely,assign;),
the set of all morphisms from F to Jy is denoted HomggructForcep.« () (Fo, F1). The
RUL

set of all such morphisms is

* *
HomStructForce]F*(M*) (]FR (ML)) = U HomStructForce]F*(]M*) (‘FOI ~Fl) ’
RVVL FoF R\ML

where the union is taken over IFg (]MZ) x Fg (]MZ )

The category of structured forces is a rich structure that allows the force-maker
to reason about the restructuring of her force, be it in terms of new recruits,
new equipment, new training, or new organization. The objects of the category
are the structured forces, and the morphisms are the restructuring operations
that the force-maker can perform. As with the category of force configurations
(Construction 2.13), each pair of structured forces comes equipped with the pos-
sibility that they cannot be transformed into one another, and this is represented
by the impossible restructuring X. We include the elementary edits just defined
as restructuring possibilities, but we also leave open the possibility that the
force-maker knows shortcuts beyond sequences of these elementary edits. This
allows us to avoid the hubris that we have captured all possible restructuring
operations, and it allows the force-maker to reason about the restructuring of
her force in a manner faithful to her own understanding of the problem.
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3.5 Lifting the Metric

The structured forces living in IFg (IMJ ) are comprised of configurations, which
suggests that we might transport some of the structure of Mj to Fg (My).
But since these constructions place the configurations into a structured set of
buckets, we have more differences to respect whilst lifting the metric. Two
force structures may differ not only in the configurations they contain but
also in their organization: the number of units, the length of the chain of
command, the density of support relationships, and so on. To fully appreciate
the structure of the structured forces, we must lift the metricin a way thatrespects
these differences. Thus, we need to consider both the differences between the
configurations involved and the manner in which those configurations are wired.

We will continue our political-economic approach to costs, conceiving of
them in terms of restructuring. In a sense, we will have to retrace our steps; after
all, it is not obvious that the machine we use to calibrate costs for the conversion
of configurations will work for restructuring forces—recall that this was the
quantale &, which we discussed at length in Sections 2.3 and 2.5, among other
locales in the text. It would appear that the way the force-maker reasons about
restructuring forces is different from the way the force-maker reasons about the
conversion of configurations: one involves institutional development at a very
high level, while the other involves equipping, training, manufacturing, and
other nitty-gritty details. As such, we introduce a new quantale, ¥, to calibrate
costs for the restructuring of forces.

3.26 Primitive (Cost Labels for Restructuring Forces)

There is a quantale
(\PI Sy, Oy, @)\PI _O‘If)

of cost labels for the restructuring of forces. V satisfies the properties defined for B
Primitives 2.16, 2.18 and 2.19.

WV calibrates the evaluation of restructuring costs—i.e., there exists a functor

COSt‘If : HomStructForceFE (]F;{ (MZ)) — ¥

(MF)

assigning a restructuring cost to each morphism in the category of structured forces.

This mimics the construction of & in Section 2.3, but it is a new quantale, W,
specifically designated to handle the restructuring of forces.
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Just as E is the language in which the force-maker describes the costs of
converting configurations, WV is the language in which the force-maker describes
the costs of restructuring forces. Of course, it could be that = = W, suggesting
that the two conversations are held in the same terms—or at least, that the
languages can be gathered under some common umbrella and share enough
overlap in meaning to be useful. But this seems untenable given the differences in
the problems at hand and in the sorts of people who play the roles of force-maker
at the respective levels. But since the two conversations, however different their
syntax, are held by the same force-maker, there ought to be some sort of bridge
between the two quantales. For example, consider the Repopulating operation
defined in Construction 3.24, where units are added, reassigned, and trained;
the operation includes both conversion and restructuring. The force-maker must
be able to reason about the costs of this operation in a unified wa, even though it
involves both conversion and restructuring. This suggests that we need a way to
unify the two quantales, & and \V, in a way that respects the differences between
the two conversations.

We therefore introduce the notion of a bridge between the two quantales.
Informally, a bridge is a pair of functions that allow the force-maker to translate
between the two languages. We take her ability to do so as primitive.

3.27 Primitive (Bridges of Perspective)
There exists a pair of maps

*

O E—V and O:¥V—E
providing a bridge of perspective between the quantales

KE, <z, @5,@5, —05)1 and \(\Ij, <y, @\y,@\y, —O\y)l

Y

conversion restrugturing
These satisfy the monotonicity condition
&8 & implies DT (&) <y O (&),
1 Sy ¢y implies D () <z P (Pa)-.

The bridge of perspective is a pair of functions that allow the force-maker to
translate between the two languages of & and W. Since these functions are
monotone, higher costs in one domain are mapped to higher costs in the other,
and vice versa. This suggests that the force-maker—or pair of force-maker-
underlings, one handling conversion and the other restructuring—share unified
goals in the conversation, even though they are speaking in different tongues.
This equips the force-maker with a powerful capacity of reasoning.
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To get a sense of why this matters, consider a large-scale reoutfitting of a
force—say, from one sort of rifle to another. To make matters concrete, consider
a set of infantry units V = {vy, ..., v, }. Each of the units houses k infantry; at
the beginning of the operation, we have

Nk . .
assigng (vx) = (¥)| SOLDIER"" — RIFLES" |,
i=1| " ’

call this graph Mé’k

where SOLDIERi’k is the ith soldier in unit v} and RIFLEé’k is the rifle he is
equipped with at the beginning of the operation. The force-maker wishes to

reequip the soldiers with a new rifle, RI FLEi’k. We have conversion costs

84]

in

A

, @ (costz o CS) (HomMz (Mé’k,Mi’k)):,

i,kenxny

recall = dIMZ (Mé’k,M;’k)

where CS is the choice schedule that picks out the appropriate conversion
process for each soldier. But such operations come laden with organizational
costs: delivery, coordination, and so on. These costs are not captured by the
conversion costs, and thus require their own reasoning.

Assuming (for now) that costs may be decomposed into distinct parts, the
bridge allows us to put the two kinds of reasoning into a single expression;
suppose Y € W is the (fixed) institutional cost of the reoutfitting operation.
Then we might write the total cost in terms of W, as in

inAE
costy (reoutfit) = ¢ @y o* @ dmy (Mé’k, Mik)

ikenxng

inw
Or, we might write the total cost in terms of &, as in

A
n o

A

costz (reoutfit) = @ (y) GBE, P du; (Mé’k,Mi'kj.

ikenxny

Y

in&
The quality of the bridge tells us how much is lost when giving ourselves the
freedom to consider the costs in either language; in particular, we need decisions
made based on the first expression to be consistent with decisions made based
on the second. This points us toward properties of the bridge of perspective.
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The monotonicity inherent in goal unification is powerful, but it remains
that the bridges might lose considerable information and structure in the course
of translation. As such, we introduce a series of properties that the bridges
might satisfy, each of which captures a different sort of relationship between the
two quantales. These are stated in increasing order of strength, all the way up
to full-blown isomorphism between the two quantales.

3.28 Definition (Bridges of Perspective)

Given the two cost calibration devices

\(5, <z, ©z, 0z, _°E)l and \(‘I’, <y, &y, Oy, _°‘I’),'

v ~
conversion restructuring

and bridges of perspective
O :E—W ad O:V—E,
we say (CD*, CD) satisfies:
1. weak monotonicity just in case
Esz @ () implies (&) <y
2. weak convertibility just in case
Esz ©(¢) ifandonlyif O (&) < 1
3. approximate identities just in case it satisfies weak convertibility and
(Po®™) (&) <z & and ¢ <y (D0 @) (¢);
4. strong convertibility just in case
O (&)= ifandonlyif &= (y);
5. order embeddingness just in case ® and ® are injections and
Sis2 & ifandonlyif @ (&) sy O (&),
Y1 Sy Py ifandonlyif ®(¢p) <z @ (¢,); and
6. isomorphism just in case

O od=idy and ®od* =ids.

These properties navigate the slack between the two quantales. In so doing,
they provide us tinkerers with varieties of ways to think about the relationship
between the two languages, and thus between the two levels of transformation.
The question, then, is how much slack we ought to maintain.
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Had we a complete characterization of the morphisms linking two struc-
tured forces, we might be on firm ground to answer this question. For example,
we might feel comfortable decomposing a given restructuring into its organi-
zational and conversion components, and then reasoning about the costs of
each—this was the tack taken in the reoutfitting example above. But the cat-
egory of structured forces is a complex structure, and we took pains to retain
generality in its definition so that the force-maker could consider substitution
and complementarity in her restructuring, not to mention generative effects in
the combination of costs. But we do not have a complete characterization of the
morphisms in this category, and so we must be cautious in our own reasoning;
really, all that we know is that restructuring and conversion are both parts of
the process and that it stands to reason that their costs are evaluated in different,
but related, vocabularies. As such, we content ourselves with a very blunt tool.

3.29 Primitive (Restructuring Costs)

There is a quantale © of restructuring costs, and three cost calibration devices
* * —
costg : HomStructForceFE(MZ) (]FR (ML)) 7

costy : HomStructForceFﬁ(Mz) (]FI*{ (Mz)) — V¥,

costg : EXV — O,

where costg assigns a conversion component to each morphism, costy assigns a
restructuring component to each morphism, and costg combines the two components
into a total cost. We assume costg is monotone in each argument—i.e.,
&1 €z & implies costg (51,1,11) <@g costg (éz,l,b) forall ¢ eV,
Y1 Sy P, implies costg (E,lpl) <@ costg (5,4}2) forall & € E.

The general approach taken here reflects a balance of pragmatic and princi-
pled concerns. We leave aside questions of the relationship between the two
components of the cost, and we focus instead on the total cost of the operation
measured in some unified currency. Whether we require a particular bridge
depends on the structure of the quantale © and the nature of the costs it contains.
For example, if ©® = E X W, then we might not need a bridge at all, since the
total cost is already a combination of the two components. If, on the other
hand, © is a more complex structure, then we might need a bridge to reason
about the relationship between the two components of the cost. The degree to
which we need a bridge, and the properties it must satisfy, are questions that
depend on the structure of the costs themselves, and so—in the name of analytic
humility—we leave them to the force-maker to decide.
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3.6 The First Rationality, Part Deux

By now, Section 3 ought to seem an awful lot like Section 2:

1. We've reasoned our way to an appropriate class of structures: in one case
the force configurations, in the other the structured forces.

2. We've considered what it means to change these structures, where in
both cases we leverage graph-theoretic intuitions to define a category
of operations, a considerable generalization in terms of the available
transformation operations.

3. We've introduced cost calibration devices to reason about the costs of these
operations independently on the two structures, and we’ve introduced a
unification of these devices to reason about the costs of the operations in
a single currency.

We will continue to retrace our steps en route to a weak metric structure on
Fr (]Mz ). Since the two problems are near-identical in structure, we will be
able to reuse much of the machinery we developed in Sections 2.5 and 3.5. We
begin by restricting attention to a particular selection of restructuring processes,
mimicking Primitive 2.24 in this larger context.

3.30 Primitive (Choice Schedule for Restructuring)
There is a selection of processes
CSg : Fg (M7 ) x Fg (M} ) — Hom (Fg (M7)),
(F1, F2) = CSg (F1, F2) € Hom (Fy, Fy),

representing the force-maker’s choice of a restructuring process between all pairs of
structured forces.

Just as with the choice schedule for conversion processes, the choice schedule for
restructuring processes picks out the restructuring process that the force-maker
chooses to apply between any two structured forces. Once again, the impossible
process X is always an option, so that the force-maker need not believe that
all pairs of structured forces can be transformed into one another. Since the
set of structured forces is so vast and so rich, it stands to reason that the hom
sets linking these objects will cover a wide variety of processes, and indeed a
wide variety of classes of processes. As such, we again lean hard on the Axiom
of Choice to construct the choice schedule, and we leave open the possibility
that the force-maker might have a more structured way of choosing between
processes. As ever, the blunt instrument will prove more than sufficient for our
purposes, and we expect that future work will refine it.
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Recall the rationality postulate we imposed in Section 2.4: the force-maker’s
choice schedule must be internally consistent in the sense that she takes the
combination of costs down multi-step paths into account when making her
decisions. Suppose that we had

CSc ([H My, [+ M2) = fiz € Homgoree ([ My, [+ M), and
CSc (L‘_"J Mo, L"j M3) = fo3 € Homporce (L‘_"J Mo, L‘_"J M3) ,

and suppose that we now asked the force-maker how she’d convert a | M,
to a [/ Mj;. The rationality postulate tells us that she should consider the
costs of the two-step process fy3 © fi», and in particular that that her choice
f13 = CSc ([ My, [t} M3) must satisfy

costz (fi2) ®= costg (fx) 2= costz (fi3) -

Thus, the rationality postulate imposes an upper bound on how costly a process
can be, namely no more costly than the multistep process that achieves the same
goal. We called this Compositional Awareness to reflect the force-maker’s need
to be aware of the costs of the processes she chooses, and to be aware of how
these costs combine in the course of her decision-making. We now extend this
postulate to the restructuring of forces.

3.31 Assumption (Compositional Awareness for Restructuring)

The force-maker’s choice schedule for restructuring processes satisfies

in ®

A

— .
EB (costg o CSR) (Fi-1, F;) 2e (coste o CSg) (Fo, Fy)
i=1

for all structured forces F and F in Fg (My ) and all chains

CSg(Fo,F CSg(Fy,F CSg(Fy_1,Fn —
F=F, R(Ol)Pl r(F1,F2) R(Fn-1 )Fn=F.

We call this the Compositional Awareness for Restructuring.

Assumptions 2.25 and 3.31 look identical, and indeed they are. Our behavioral
imposition is only that the force-maker knows that change can be concatenated.
The combination of costs across paths might be nuanced or straightforward, but
the force-maker must be aware of how they combine. This is, to repeat, the first
rationality, and it is rather weak: in particular, no local optimization is implied.
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Compositional Awareness is a desirable property in the present context.
Consider a force-maker considering a restructuring operation, say Napoleon
considering the introduction of the corps system. In plain terms, the corps sys-
tem was little more than the introduction of a new level of organization between
the division and the army, but it had profound effects on the organization of
the French army. But for the present purposes, the more important point is
that the introduction of the corps system was a big job—not the sort of thing
that could be done all at once. Instead, it was a process that took place over
a number of years, with the introduction of the corps system in the Grande
Armée in 1805, and its full implementation in 1807. During that time, a broad
swath of restructuring operations took place, including the development of new
command structures, adjustments to the logistics and supply chains, training
of new officers, and so on. In the context of our theory, the introduction of the
corps system was a restructuring operation that took place over a number of
years, and it was composed of a number of smaller restructuring operations.
Each of these operations is encoded as a morphism linking one intermediate
structured force to another, and the total restructuring operation is encoded as
a chain of morphisms from the initial structured force to the final one:

Develop Command Structures .
Force Force with Command,

Adjust Logistics . Lo
_— Force with Command, Logistics,

Train Officers . .. .
_— Force with Command, Logistics, Officers.

Each of these operations incurred costs, and the total cost of the restructuring
was the sum of the costs of the individual operations. (Recall that ®¢, the
operation combining restructuring costs, need not be the literal sum; linearity
might be undesirable for such long-term projects, where accumulated fatigue
or path dependencies might make the total cost of a restructuring operation
more than the sum of its parts, and likewise for happier tales.) Napoleon did
not simply wake up one day and say le corps, c’est chic; instead, he reasoned
about the restructuring of his army in a way that was consistent with the costs
of the individual operations. His mind’s eye had a target structured force in
view, but he also had to think about the processes that would get him there,
not to mention the costs of those processes. Compositional Awareness does not
demand that Napoleon chose the cheapest restructuring operation, nor that he
chose the restructuring operation that would get him to his target structured
force in the fewest steps. Rather, it requires that, among the paths of which he
was aware, he chose one with an aggregate cost no higher than any other path
to the same target structured force.
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We have again introduced Compositional Awareness in the service of gen-
erating a metric structure, this time for the category of structured forces rather
than of force configurations. We define the candidate metric just as with Con-
struction 2.29.

3.32 Construction (Candidate Weak Distance for Structured Forces)
We define the function

drz(mr) Fr (M) x Fg (M) — ©,
(F1,Fy) = 0 (Fy,F,) 0 0 (F1,F1),

where ©g¢ is the subtraction operation in ® and O := costg o CSg.

Once again, the candidate weak distance is the difference in cost between
moving to a target structured force and staying put in the initial structured
force. Just as with force configurations themselves, structured forces are subject
to slingshot effects and the urge to decay thanks to a lack of discipline. In the
static case where all maintenance processes are costless, the candidate weak
distance is simply the cost of moving to the target structured force; in that case,
Compositional Awareness is necessary and sufficient for the candidate weak
distance to be a weak metric on Fg (M] ) in terms of the quantale ®. But
in the general case, we again need to strengthen Compositional Awareness to
Dynamic Awareness, which requires that the force-maker consider the costs of
the maintenance processes that keep her structured force in place.

3.33 Assumption (Dynamic Awareness for Restructuring)

We say a choice schedule CSy satisfies the Dynamic Awareness for Restructuring
just in case

(012 ©@ 011) ®o (023 ©0 O2) 2o (613 O O11)

where 0;; = (costg o CSg) (FZ-, F ]-), and where this obtains for all structured forces
Fy, Fy, F3in Fg (M7).

Dynamic Awareness is the extension of Compositional Awareness to the dynamic
case, where the force-maker must consider the costs of the maintenance processes
that keep her structured force in place. She may not choose maintenance
processes more costly than the restructuring processes that would achieve the
same goal: for the purposes of this theory, maintenance is necessarily cheaper
than transformation. This is a strong assumption, but it is still weaker than the
assumption that maintenance costs are zero. The chaos inherent in a world
where maintenance is more costly than transformation is too great for us to
consider here, but future work might consider the implications of such a world.
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We now have all the pieces in place to deliver the main result of this section.

3.34 Proposition (Weak Metric on Structured Forces)

If coste and CSg satisfy Dynamic Awareness for Restructuring, then the candidate
weak distance dJFE(JMZ) is a weak metric on Fg (]MZ) calibrated by ©.

Proof. Thisis likely obvious, but given the centrality of the result, we will provide
a proof. Recall the requirements were given in Definition 2.28.

1. Weak Codomain: naturally, d]FE(MZ ) takes valuesin ®, because itis a function
with © as its codomain.

4

2. Identity of Disceribles: we need to show that, for all structured forces F €
Fg (M} ), we have dez(my) (F, F) = Op. The distance is given by

dezvy) (F,F) = 0 06 0,
where 0 = (costg o CSg) (F, F). Recall the definition of ©g:

0o if 6, 2g 04,

61 [S) 62 = .
0, — 6; otherwise,

where —g is the hom object in ®. We don't need to consider it, since =g
is reflexive; thus, we have 6 © 6 = 0Og.

a4

3. Triangle Inequality: the inequality takes the form
dez(vr) (F1, F2) ®e digmr) (F2, F3) 2e dg(mz) (F1, F3)

for all structured forces F;, F,, F5 in Fg (]MZ ). This is precisely Dynamic
Awareness for Restructuring, and so we are done.

We conclude that the candidate weak distance d]FE(MZ) is a weak metric on
Fg (M} ) calibrated by ©. ]

The proof is straightforward, suggesting that the hard work lay in the construc-
tion of our theory rather than in the verification of its properties. The result is
a weak metric on the category of structured forces, calibrated by the quantale
© of restructuring costs. The force-maker’s reasoning is essentially spatial in
character: she can think of the status quo as a point in a space of structured
forces. All other possibilities laid out around her, some closer and others farther
away. The distances are defined by the costs of the changes she would need to
make to get from one structured force to another, the intermediate steps pre-
senting themselves as paths. For all its ugliness, it is, without doubt, a beautiful
conceptual world she inhabits.
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The final reprise from Section 2 will be to topologize the set of structured
forces that reflects the weak metric structure we have just defined. We will
follow the same path as before, defining the open sets of the topology to be the
sets of structured forces within a certain distance of a given structured force.

3.35 Construction (Topology on Structured Forces)
We define the topology Tz (mz) on Fr (M) to be the topology generated by the basis

Brxm:) = {Bo (F, ¢) | F e Fg (M]), ¢ € ©},

where Bo (F, €) = {G € F (M) | & >o drguy) (F, G)}.

The topology on structured forces is generated by the open sets Bg (F, €), which
are the sets of structured forces within a distance ¢ of a given structured force F.
Continuous functions on the space of structured forces are those that preserve
these open sets, and the force-maker can reason about the continuity of her
operations in terms of the open sets of the topology.

Summary of Section 3. In this section, we have developed a theory of struc-
tured forces. The theory ran parallel to the theory of force configurations, but
with a focus on the organization of forces rather than on the resources they
contain. Where a force configuration is a graph with vertices representing force
atoms and edges representing their relationships, a structured force is a graph
with vertices representing force units and edges representing their relationships.
The sorts of atoms accommodated by the theory are the elements of force, and
the sorts of force units are the force configurations. But structured forces bring
their own special problems to the table: command relationships necessarily
form a hierarchy, but there are myriad non-hierarchical relationships that must
be accommodated as well. Moreover, reasoning about change among structured
forces requires some sort of conceptual bridge between the two languages of con-
version and restructuring. We have proceeded by making the weakest possible
impositions about the force-maker’s reasoning, and we have shown that these
impositions are sufficient to generate a weak metric structure on the category of
structured forces. Owing to the similarity between the two theories, we have
been able to reuse much of the machinery we developed in the previous section,
and we have been able to deliver the main result with relative ease.”

*2Your humble author apologizes in case the second treatment has moved a bit too quickly;
the similarity between the two theories is such that it is difficult to avoid redundancy, and so the
author has taken the liberty of assuming that the reader is comfortable with the concepts and the
machinery developed in the previous section. Such assumptions are fraught with peril. Asses
like you, me, and the force-maker—we're all in this together.
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4 Force is a Concept

We have climbed the mountain of the concept of force, and it’s come time to
descend. We have collected many souvenirs along the way, most notably:

1. We have several important sets, including;:

(a)
(b)
(©
(d)

the elements of force, L;

the force molecules, M ;

the force configurations, ]MZ ; and
the structured forces, IFg (]MZ )

2. The last two of these come equipped with useful constructions:

(a) We can see them as categories. The category of force configura-

(b)

(©

tions takes configurations as objects and conversion processes as
morphisms, whereas the category of structured forces takes struc-
tured forces as objects and force restructurings as morphisms. The
respective hom sets are meant to capture real-world possibilities,
and surely both categories include conversion processes and force
restructurings—not to mention force configurations and structured
forces—about which we humans are not yet aware. As such, each
hom set also includes the impossible process X.

We can see them as enriched categories under particular choice
schedules with appropriate rationality impositions. To do so, we
attach to each morphism a cost evaluated in terms of some quantale,
and we require that the cost of a composite morphism be the sum
(in that quantale) of the costs of its constituent morphisms. Further,
we take a snapshot of the force-maker’s means of navigating the
category, which we call a choice schedule. We require that the force-
maker’s choices be rational in the sense that they minimize the cost
of the force configuration or structured force they produce given the
processes of which they are aware.

We can see them as weak metric spaces with distances calibrated
by the quantle in question. The objects of the category become the
skeleton of a sort of map, and the selected morphisms become edges
encoding how far one object is from another.

By page 125, the reader is on firm footing in asking whether these souvenirs are
worth the journey. Many such readers are motivated by practical concerns, and
so we must ask: what can we do with these souvenirs? And, can we store them
in our luggage for the next leg of our journey?
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This section is dedicated to showing that the souvenirs we have collected are
not just trinkets, nor even one-off tools used to strengthen our understanding of
force. They are quite capable of doing applied work, too.

1. First, we will take on a particular applied problem in international relations:
force emulation. States often mimic one another’s force structures, both
in how they outfit and organize their forces. We will show that the
spaces laid out here can be used to model this process. This is a valuable
contribution, since emulation is both common and understudied in the
literature—perhaps because there has not been a good way to model it, or
perhaps due to bad luck.

2. Second, we will take a more general approach to the question of the
desirability of a given structured force—after all, there are many reasons
to think that a given force is good or bad, not just the fact that it is or is not
a copy of another force. We will show that the structure of the space of
structured forces provides the richness we need to bring classical utility
theory to bear on the question of force desirability. This, too, is a valuable
contribution, as it links our constructions to the real numbers used by
game theorists to model strategic arming. Whereas the first two parts of
this section are about the structure of force, this part is about the value of
force, which reinforces its conceptual nature: force plays the same part
utility does in the theory of rational choice, both a crystal and a residue.

3. Third, we will demonstrate the usefulness of the general approach by
consider another applied problem in international relations: strategic
arming. There is a robust literature on the topic, including a large set of
formal models that use real numbers to model the value of force. This
suggests a means of calibrating doctrine to particularized strategic needs,
and we will show that our constructions can be used to model this process.
Moreover, we will be able to show what is lost by taking a unidimensional
approach, namely that equilibria are mod a force level.

In both cases, we will show that the souvenirs we have collected are not just
useful, but essential. What is more, we will find that an important aspect of
force is not just the variable that takes on the value of a structured force, but the
way force-makers navigate the space of structured forces, compare them, and
choose among them. Force is not just a variable, but a variable with a particular
structure, and it is precisely because we have done justice to this structure that
we can do applied work with the concept of force. Of course, it is hoped future
readers are more creative than is your humble author, and that they will find
even more uses for the souvenirs we have collected.
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4.1 Emulation

It was in August of 1885 that Chilean President Domingo Santa Maria did bring
into his employ a Prussian military educator by the name of Emil Kérner. Kérner,
a decorated veteran of the Franco-Prussian war and a well-respected professor of
military history, tactics, and ballistics at the Artillery and Engineering School in
Charlottenburg, was to lead the Chilean military into the modern era. “Surely,”
one might think, “such reforms must have seemed necessary because the Chilean
army seemed too weak and notjustbecause it seemed like the wrong sort of army.”
But one would be wrong: the Chilean army had just won a valuable victory
against Peru and Bolivia in the War of the Pacific, and was widely regarded as one
of the most powerful in Latin America. This was not a matter of modernization
so much as prussianization: Kérner was to bring the Chilean military into the
image of the prestigious and recently-successful Prussian arlrny.53 Through a
series of reforms, Korner remade the Chilean army in the image of the Prussian.

Korner wasn't the first choice for the job: that honor went to another Prussian
officer, Jakob Meckel ( , ). Meckel, however, was already on loan,
having just been retained by the Japanese government in a similar capacity; his
recommendation for the position came from no less an authority than the Chief
of the German General Staff, Helmuth von Moltke ( , ). Having
observed the titantic success of the Prussian army in the Franco-Prussian war,
the Japanese strategic establishment—previously under the tutelage of the now-
disgraced French—sought to change their guiding star. Though less ingratiated
with the Japanese than Kérner would be with the Chileans, Meckel nevertheless
made a lasting impression on the Japanese military through a series of reforms
that brought the Japanese army more in line with the Prussian model.

The Chilean and Japanese cases are not unique, nor is Prussia the only model
for emulation, nor is there anything special about the end of the 19th century, nor
are military forces the only things that states emulate. It happens to be the case
that South American states were particularly likely to emulate western-European
models in the 19th century, but this is not a general rule. ( P
3) records twelve emulation projects by South American states from 1870-1930,

five emulating Germany and four emulating France.”

*3Details throughout this section are drawn from a few useful sources, including Frederick M.
Nunn'’s Yesterday’s Soldiers ( ), Bernd Martin’s Japan and Germany in the Modern World ( ),
William F. Sater and Holger H. Herwig’s The Grand Illusion ( ), Emily O. Goldman and
Leslie C. Eliason’s The Diffusion of Military Technology and Ideas ( ), and Jodo Resende-Santos’s
Neorealism, States, and the Modern Mass Army ( ).

*The others all emulate Chile, who by then was already emulating Germany. Japan emulated
France from 1866-1878 and Germany from 1878-onward, which poses interesting problems
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Korner and Meckel’s reforms covered a wide range of topics, some of which
comport well with our understanding of force, others suggesting promise for
future work. Regardless, they suggest that the emulation problem is a rich one,
and that it is worth our time to model it.

1. The org chart: The Prussian army defeated the French, in large part, because
of its ability to deliver force to the battlefield more quickly. Mobility lay
at the core of the Prussian army’s success, and this was in large part due
to its organizational structure. Meckel formally introduced the divisional
and regimental level of organization to the Japanese army, which had
previously been organized only at lower levels despite influences from
the French. Improved mobility is credited as an important factor in the
Japanese victory in the First Sino-Japanese war ( , ), where

the Japanese army was able to move more quickly than the Chinese.”

Less successful were the changes to org charts in the Chilean army, where

Korner originally placed himself (as Inspector General) at the top of a

centralized org chart with direct reporrting from a broad, high-level staff.

This invited political pushback from the civilian government, and even-

tually the compromise was a set of units determined by the army but

understaffed due to insuffucient support ( , )-

( ) argue that these changes were too superficial in nature and that

the attendant lack of change in the more subtle support structures of the

Chilean army led to diminished effectiveness. But, such changes were part

of second- and third-wave reforms ( , , p- 147), which
also included the introduction of the divisional and corps-based structure
to the Chilean army:.

It should be noted that, for both the Japanese and Chilean cases, the
changes to the force structure were implemented reasonably quickly: it
was among Meckel’s first changes the Japanese army and Korner’s first
changes in the second-wave of reforms after the Chilean Civil War. This
suggests that org charts are indeed a good place to start when asking a force-
maker what “change” looks like. Happily, our construction is well-suited
to accommodate these decsisions (and occasional non-decisions) about

because France started emulating Germany in 1870. Mon dieu! Dios mio! Mein Gott! bty 53l
*The Chinese army had itself undergone extensive renovation, but this renovation was not
emulation-based. The so-called Self-Strengthening Movement was a series of reforms that sought
to modernize the Chinese army without reference to any particular model. Included in the
movement was an attempt to send Chinese cadets to the United States Military Academy, but no
formal changes were made to the Chinese army’s org chart, nor the way it drilled ( , )-
( ) would call this a case of innovation, not emulation.
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force structure, not to mention deeper aspects of organization. Suddenly
our sandbox feels more like a box full of fertile soil.
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2. Equipment. Prior to Holder’s arrival in Chile, the Chilean army’s small
arms were largely French (with Belgian and American influences) and its
artillery largely German; after his arrival, the Chilean army was outfitted
with German small arms and artillery exclusively, with purchasing and
testing also among the highest early priorities ( , , p-
134). This, too, suggests a move in the direction of the Prussian model.
Meckel’s reforms suggest that reoutfitting is a matter of considerable detail:
Japanese uniforms were recut to match Prussian styles rather than the
prevailing French ones ( , , p- 40).

Our construction is well-suited to accommodate these decisions, too: we
have extreme flexibility in the choice of force molecules, and we can
easily model the costs of retooling via appropriate force conversions or
restructurings. The costs of such processes are not trivial, so the flexibility
of the quantales E, WV, and © are most useful here.

3. The officer corps and general staff: Both Koérner and Meckel expanded the offi-
cer corps and general staff of their respective armies, and both introduced
a system of military education that was more in line with the Prussian
model. This is a more subtle change than the previous two, but it is no less
important. We can proceed quite naively regarding the size of the officer
corps, since we merely need to load up larger configurations into the
respective headquarters units. The general staff takes its character from
a mixture both of the resources required and the place occupied in both
the command partial order and the non-command hypergraphs; while it
is more nuanced than the size of the officer corps, it seems quite tractable
nonetheless. Training is more difficult to model, though non-command
relationships in the hypergraph might be a good place to start, along with
“catalyst” units that point to more desirable configurations.

4. Conscription: Now here emerge more serious difficulties, as we have not
thought very hard about the origin of the materials that make up the force
molecules. Kérner and Meckel both introduced mandatory conscription to
their respective armies, and this is a change thatis not easily modeled in our
current framework. Now, it could well be that any one of the cost calibration
quantales includes some dimension—or dimensions—for various aspects
of conscription, and that we could model the costs of conscription in terms
of these dimensions. Or, the molecules might differentiate a soldier who's
been conscripted from one who hasn’t, keeping them the same in all other
respects. These provide partial coverage of the problem, but not complete
solutions; we’d at least have to think through a state’s labor market.
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5. Tactics: Meckel brought with him an abiding love of infantry-based tactics,
again in line with the Prussian model. This is a change that is not easily
modeled in our current framework, either: we have studied the structure
of force, but not the way it is used. Here it is hard even to salvage partial
coverage, so instead we must admit that our construction is incomplete.
Butletit be suggested here, if the reader will indulge, that it would be most
difficult indeed to talk very deeply about the way force is used without
knowing just what it is that’s being used in the first place. Naturally, it
is not hard to imagine applications involving constructions from a given
force representing deployments and tactics thereof.

6. Other practices, like promotion and retirement: When a state hires a foreign
officer to reform its military, it is not just hiring a foreign officer. It is hiring
a foreign officer who has been successful in their own military, and who
has a particular set of practices that they bring with them. These foreign
officers often come with their own staffs from their home countries, and
these staffs often bring with them their own practices. The changes these
foreign officers impose often refer more to internally-focused, non-force-
bearing practices that nevertheless remain altogether indispensible to the
character of the force. These are changes that are not easily modeled in
our current framework, either.

Suffice it to say that the changes were deep and wide-ranging, intentional but sub-
ject to the vagaries of politics and the limits of the possible, oft-understandable
in the language we’ve developed but imperfectly so. The emulation problem is
a rich one, and it is worth our time to model it. What is more, we will find that
an important aspect of force is not just the variable that takes on the value of
a structured force, but the way force-makers navigate the space of structured
forces, compare them, and choose among them. The force space is not just a
variable, but a variable with a particular structure, and it is precisely because we
have done justice to this structure that we can do applied work with the concept.
Given the incomplete coverage of our construction, our modeling goals are
relatively modest: the goal is more to show that the problem can be appreciated
in the language of force than to get every detail right. Indeed, the mostimmediate
goal is to show that a first-cut encoding of the emulation problem is well-posed
in the language of force—i.e., it can be written down in a way that makes sense
and that can be solved. Only then can we begin to think about how to refine our
construction to better model the emulation problem, though the thoughts below
are more applicable than they are applied. However, it is hoped that the reader
will find the thoughts below to be a useful starting point for thinking about the
emulation problem, and similar applied problems, in the language of force.
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The emulation problem takes a rather simple form:

4.1 Construction (Emulation Problem)

An emulation problem takes the form

min de (F,7T),
Fun, 4o (F27)

where

1. dg : Fg (Mf) X Fg (M} ) — © is the emulator’s weak metric on structured
forces calibrated by ©;

2. S € Fy (]MZ) is a structured force representing the emulator’s status quo;
3. T € Fx (]MZ) is a structured force representing the target force;
4. B e ® )\ ([0g] U {oo}) is the budget for the emulation process; and
5. the set
Ds(p) ={F e Fx (ML) | p 20 do (F,S)} € Fr (M)

is the domain of the emulation problem.

The emulation problem is quite simple: minimize the distance between the
status quo force and some target force, subject to a budget constraint based on
that status quo and an acceptable amount of change.

The most immediate question is whether the emulation problem is well-
posed—i.e., does it always possess at least one solution? This is a common
question in optimization theory, and social scientists usually write down prob-
lems where simple versions of the Weierstrass extreme value theorem apply.
The Weierstrass theorem(s) are a set of results that guarantee the existence of
a solution to an optimization problem under certain conditions. Ok’s ( ,
p. 67) “Baby” Weierstrass Theorem reads: for any a,b € R such thata < b
and any continuous function f : [a,b] — R, there exists some x € [a,b]
such that f(x) < f(y) forall y € [a,b]. His full-blown Weierstrass Theorem
(p. 225) reads: if X is a compact metric space and ¢ : X — R is continuous,
then there exists some x € X such that ¢(x) = inf,cx@(y). Thus, Ok’s most
general version of the Weierstrass theorem requires that the objective function
be real-valued and the domain be a compact metric space. We have neither of
these at our disposal. (2006, Corollary 2.35, p. 40) help by
removing the metric requirement, but they continue to work in the real-valued
case. Our objective function takes values in the quantale ®, and it seems unlikely
that emulators will have appreciably-simpler Os than other force-makers. We
therefore must look elsewhere for help.
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We first want to show that the function
dg : Fg (M7 ) x Fg (M) » ©

is continuous. This raises a natural question: whatis continuity in abstract spaces
like these? After all, it seems unlikely that we can appeal to you-never-lift-your-
pencil continuity, since we are working in highly-abstract spaces. However, this
is precisely what topology is for: it is the study of continuity in highly-abstract
spaces. The most general definition of continuity is in terms of open sets, and
the most general definition of an open set is in terms of a topology. A function
f + X = Y between topological spaces is continuous if the preimage of every
open set in Y is an open set in X. Now, we’ve worked very hard to identify a
suitable topology for our X—in this case, Fx (IM] )—but we've yet to provide a
topology for our Y—in this case, ©. This means that we don’t yet know what
tests our function must pass to be continuous.
We have a few options here.

1. At one end of the spectrum, we could equip © with the trivial topology,
where the only open sets are @ and ©. The preimage of any open set in
© is either & or Fg (]MZ ), both of which are open in Fg (]MZ ) Thus, any
function from Fg (]MZ) to © is continuous, including dg. This is akin to
curing a headache by amputation.

2. At the other end of the spectrum, we could equip ® with the discrete
topology, where every subset of © is open. Continuity therefore involves
checking an inordinate number of preimages for subsets of ® about which
we know very little (by design). This is akin to curing a headache by
working through a 12-step program.

3. Weinstead focus on intermediate possibilities that leverage what we know
about © while still providing a reasonable test for continuity. We know,
for example, that ©® comes equipped with a preorder g, so we could
equip © with the order topology, generated by the open intervals

Up”™ (0) = {0' € ©| 6" >0 6} and
Lo%*" (0) = {0' e ©] 0' <o 0},

which winds up including all the “invervals” and “rays” of ©, where the
scare quotes reflect the fact that these are not intervals or rays in the usual
sense but rather are an abstractified set of projected rectangles and half-
planes. The lack of completeness on =g makes this an unwieldy choice,
but it is a choice that is at least somewhat reasonable—akin to curing a
headache by taking flu medicine.
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4. We could try something more tailored, like a topology defined only by the
Order
half-planes Lo

topology: the dual Alexandrov t‘opology.“r’6 The dual Alexandrov topology is
defined by the open sets

(0). This is related, but not identical to, a well-known

L™ (0) = {0'e © | 0' <¢ 0},

which are the half-planes of ©. However, the inclusivity of the Alexandrov
topology makes it a poor choice for our purposes, as it is not clear that the
preimage of an open set in the Alexandrov topology is open in IFg (M ).
This is akin to curing a headache by taking a nap. But by defining the
open sets as

[06,0) ={0' €06 <o 0},

we can define a topology that is both more natural for our purposes and
more likely to be useful.” This will serve as our choice for the topology
on O, curing a headache by taking an appropriate dose of aspirin. We call
it the strict-bound topology.

This list is surely not exhaustive, but it is enough to get a sense about things. No
one decision is perfect, but the strict-bound topology is a reasonable choice that
is likely to be useful. Other applied problems will likely require other topologies.

Beyond a topology for ®, we also introduce an assumption ensuring that
continuity is a meaningful property with respect to our intuitions. We have
not assumed much about how many elements are in ©, and it could well be
that it is prosaic in the extreme—say, @ = {FALSE, TRUE}, where this represents
impossibility and possibility, respectively. While continuity is a meaningful
property in this case, it is not particularly interesting. To that end, we introduce
a density assumption that ensures that if one element is strictly above another,
then there is some element that is strictly above the lower element but strictly
below the higher element. This property is often called order density, and it is a
reasonable assumption to make here. We will go one step further to assume that
the “gap” can be filled, or partially filled, by two copies of a gap-filling element.

*®Here “dual” refers to the fact that the open sets are defined by the lower sets of the preorder,
rather than the upper sets. In the standard Alexandrov topology, the open sets are defined by the
upper sets of the preorder. In our context, nothing is lost by taking the dual.

The only difference here lies in the use of <@ rather than €g. This precludes the usual
problems one might encounter by using < on R, butalso situations where the lack of antisymmetry
in © introduces isomorphism classes of bounds. Given the similarity, it seems like we should call
our topology something related to Alexandrov, but this would insult the latter, which includes
the important feature that arbitrary intersections remain open. No such properties emerge here,
meaning the strict-bound topology lacks the property that makes Alexandrov Alexandrov.
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We formalize the idea as follows.

4.2 Assumption (Double Separation Property)

For the purposes of Section 4.1, we assume

01 >0 6, = (01 2 03 o O, ®g 05 for some 05 >g 0g) .

This is a property that is often assumed in the study of order topologies, and it
is a reasonable assumption to make here. In essence, it asserts that each hom
element 0, — 0; is dense in ©, and it requires this only of the hom elements.
This assumption is slightly stronger than is absolutely necessary for the current
purposes, but it is a reasonable assumption to make, and it makes the proof of
the claim below particularly straightforward.

We now turn to the question of continuity. To repeat, continuity is important
because it ensures that the function dg is well-behaved with respect to the
topology on ©. It means that small changes in the forces between which we
measure distance result in small changes in the distance between them: if your
hands are one foot apart and then you move them each by a small amount, they
will still be close to one foot apart. Here we mean that if two forces can be
converted into one another with a small amount of restructuring, then this will
remain the case even if each of them is restructured by a small amount first.

It turns out that our care in choosing topologies and issuing assumptions
has paid off, as we can show that the function dg is continuous rather painlessly.

4.3 Lemma (Continuity of the Weak Metric)
Under the double separation property, the function
de : Fr (M]) x Fg (M]) — ©,
(F,G) = (coste o CSg) (F,G)
is continuous, where the domain Fg (M] ) X Fg (M} ) has the product topology

obtained from the weak metric topology on IFg (]Mz) representing restructuring costs,
and the codomain © has the strict-bound topology. [Proof .]

This generalizes the well-known fact that traditional—i.e., real-valued—metrics
are continuous on their domain. This suggests that this well-understood continu-
ity does notrely on all of the properties of traditional metrics: notreal-valuedness,
nor symmetry, nor the identity of indiscernibles matters for continuity. On the
other hand, the triangle inequality plays an important role in the proof, as it does
in the proof of continuity for traditional metrics; this is the essence of distance,
and it provides us with the basic property of continuity that we need. This result
represents one passed test for traditional approaches to optimization.
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We now turn our attention to the compactness the set
Ds (B) = {F € Fr (M0) | B 26 do (F,S)} € Fr (ML),

where S is the emulator’s status quo force. Compactness is a topological property
that is a generalization of the notion of a set being closed and bounded in R".
Theset[0,1] € Ris compact, for example, as is the closed unitball in R". [0, o0)
is not compact, as it is closed but not bounded, and (0, 1) is not compact, as it is
bounded but not closed. In general topological spaces, one defines compactness
by way of open covers and finite subcovers, as in the following definition.

4.4 Definition (Compact Set)
Let (X, T') be a topological space. We say a set K € X is compact just in case every
open cover of K has a finite subcover—i.e., if there exists
{Oua}tpen €T suchthat K C U O.,
a€gA

then there exists some n € IN and some function @ : n — A such that

n
Kc U Oa(i)-
i=1

Essentially, compactness is a property that ensures that a set is not too big to
study things like continuity and convergence; this is quite important in the
optimization setting laid out in Construction 4.1. It generalizes our ideas of
closedness, boundedness, and—more fundamentally—finiteness. We would
very much like to show that D (B) is compact, as it would provide intuitions
from a host of optimization problems that are not immediately available in our
setting. However, compactness can be difficult to show, and a host of related
properties are often required to prove it.

We therefore count our blessings when we find that the set D () is compact.

4.5 Lemma (Emulation Problems Have Compact Domain)

Under the topologies from Lemma 4.3, the set
Ds(B) = {F e Fx (M]) | B 20 do (F,S)} € Fr (M])
is compact for any S € Fg (M] ) and § € ©. [Proof .]

Thus, we have the tools at our disposal required to apply Weierstrassian thinking
to the emulation problem.
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Figure 12: Solving the emulation problem.

We now state the main result about the emulation problem.

4.6 Proposition (Emulation Problems Have Solutions)

Under the topologies from Lemma 4.3, the emulation problem has a solution. [Proof.]

Figure 12 depicts the solution to the emulation problem. The choice set Ds (B)
is a compact subset that includes the source force S, and the target force 7 is
some point in the space of structured forces. The solution, marked with a star,
is the point in Dg () that is closest to 7 in the weak metric. Remarkably, this
process works no matter where our source force lives in the vast sea that is
Fr (]MZ ), no matter where the target force lives, and no matter the size of the

budget, which merely defines the dark gray region.58

*Note also that neighborhoods need not look like neighborhoods in the usual sense.
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Based on what we learned en route to the proof of Proposition 4.6, we can
make a few more observations to enrich our understanding of the emulation
problem. We begin by observing that ©, being merely a preorder, can make it
difficult to understand the senses in which a given budget is “large” or “small.”
The problem demands that the amount spent making changes to the force be less
than some budget f € ©, but it is not clear how much information is involved
in this statement. We can envision something like a “multidimensional” budget

B={B1,...,Bx} €O,

where each f; represents a different aspect of the budget.59 These aspects might
include purely-financial considerations, but they might also include consider-
ations of political feasibility, social acceptability, or military necessity. In case
B = {B1, B2} S O, four cases emerge:

1. By <@ Pa, so that 3, is the only constraint on the emulation problem;
2. B2 <@ P1,so that it is f; that is the sole constraint;
3. B1 = Bo, so that both represent the same constraint; or

4. B; and B, are incomparable, so that both are distinct constraints.

Naturally, as the number of dimensions in the budget increases, the number of

cases increases. The common structure of © ensures that the complications all

take similar forms, so that we study finite “strands” within the vast “web” of ©.
Happily, this enrichment creates no new difficulties.

4.7 Corollary (Multidimensional Emulation Problems Have Solutions)
Let B = {ﬁl, B k} € © be a multidimensional budget, and define the domain

Ds(B) = {F € Fx (M]) | i 20 do (F,S) foralli € k} € Fx (M}).
The problem of minimizing de (F, T ) subject to F € Dg (B) has a solution.

The key here is that |B| = k is finite: each aspect of the budget induces a
compact set in ©, and their union is compact there, too. We will stick with
multidimensional budgets throughout the rest of the section.

The scare quotes on “multidimensional” are meant to indicate that we are not talking about
a vector space, but rather a set of elements from a preorder. It’s not as if the elements of B can be
added or subtracted, nor that they are in any sense orthogonal. In a vector space, budgets might
look like orthogonal vectors—i.e.,

(B1,00,00,...,00), (0, B2,00,...,00), ..., (0g,00,0¢,...,Bk),

or if you prefer, a diagonal matrix diag (1, . . ., Bk ). But we need no such structure here.
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Naturally, the budget is not the only thing that might be multidimensional,
nor is it the most interesting thing. For example, it could well be that the
emulator wishes to emulate multiple target forces; it was common, for example,
for 19th-century states to emulate German armies and British navies; nowadays,
one might emulate the United States in some respects and China in others. This
is a more complciated problem, and since we know less about the structure
of Fg (M} ) than we do about ®, we must proceed delicately. Of course, in
choosing a delicate course of action, we learn quite a bit about the problem itself,
which at least ensures that the rumination is of substantive value.

Multitargeted Emulation via . Suppose we started from some finite set
of emulation targets 71,..., 7, € Fg (]MZ ), all of which we wished to emulate.
One way to handle this is to consider the problem

m
min de (F,Ti).
FeDs(B) 16:? @( 1)

This is a straightforward generalization of the single-target case, where the idea
is to penalize the emulator for being far from any of the targets. This is a good
place to start, as it seems to introduce minimal modifications to the single-target
case. But, this approach has a downside: under the topologies we have been
using, it works only if ® has more structure than we’ve been assuming:

4.8 Lemma (Continuity of ®)

The function ®g : © X © — O is continuous in the strict-bound topology if, and only
if, for any pair of labels 01, 0, € ©, there exists some 01 o~ 0, € © such that

0; ®p 0, <@ 01 ifandonlyif 03 <g 01 o= 0,,

called the strict left adjoint of ®g. [Proof.]

We've taken great pains to impose as little structure as possible on ©, and thus
prefer not to introduce new structure if we can avoid it. In some circumstances,
the juice is worth the squeeze, such as when a problem naturally allows for
Euclidean-like operations on ©. But in general, it is better to proceed without
requiring new machinery. What’s more, it is not obvious that this is how the
emulator actually reasons: it seems more likely that the emulator would consider
the targets separately and then make a decision based on all of them, instead of
considering the sum of the costs it would take to get to each target. Consequently,
we will leave this option aside and consider more general approaches.
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Multitargeted Idealization. Now suppose you were tasked with emulating
the Prussian army and the British navy. Would your reasoning look like the
reasoning inherent in the approach just discussed? It seems unlikely: when
evaluating a feasible option, would you say to yourself “and I could get this close
to the Prussian army and this close to the British navy?” Probably not. Instead,
you might use the Prussian army and British navy as inputs to an idealization
process, where you envision a structured force similar to the Prussian force in
army respects and similar to the British force in navy respects. In other words,
you would turn two (real) targets into one (ideal) target.

One could have more than two targets, which need not be Prussian or British.
The same goes for the reality of the targets: for example, if you handed Machi-
avelli a structured force and told him to make changes based on multitargeted
emulation, his idealization process would include a structured force that modern
in some senses and ancient in others. Indeed, our structure allows the emulator
to conjure up any number of ideal targets from very different parts of Fg ( M] ),
a set that contains every force that ever was or could be. So, we introduce the
idealization map:

4.9 Primitive (Idealization)
There is a map
Tdeal : P (Fg (M) x Fi (M}) — Fg (M),
(T,..., Tw}, F)— 1deal ({T1,..., Tu}, F)
called the idealization map. We refer to Ideal ({71, ..., T}, F) as the ideal target
of F withrespectto{T1, ..., Ty }. Asamatterof course, weimpose Ideal (&, F) = F.

An idealized emulation problem takes the form

min d@ (-F/ Ideal ({71/ .. /7711} /S)) ’
feps(B)

where {T1,...,Tu} € Fx (]MZ) is a set of targets.

The idealization map is a powerful tool, as it allows the emulator to turn any
number of targets into a single target, which then is input to the single-target
emulation problem as we’ve already discussed.”’ The idealization process is
with respect to the status quo, S, ensuring conceptual continuity with the single-
target case. The nuances introduced are precisely the nuances of the map Ideal,
which we now examine in more detail.

6ONothing precludes a stubborn emulator from having a constant-valued ideal target, but this
then reduces to the single-target case with some exogenously-determined target.

140



Since dg is continuous in its two arguments, our main goal is to show that
Ideal is continuous in its two arguments—this would mean that dg is continu-
ous in the idealized emulation problem. This requires setting a topology for the
domain of Ideal, whichis P (]FE (]Mz)) x Fx (]MZ ), where P (]Ff{ (]MZ)) is the
power set of Fg (M7 ). We will use the strict-bound topology on P (Fg (M7 )),
where the order comes from supersethood, 2. In other words, for any two
subsets A, B ¢ ]FI*{ (]Mz ), we have A zp B if A 2 B. Substantively, this means
that if two target sets T' = {7], e, ’77,11} and T' = {ﬂ', el 7;,'12} are similar to
one another by way of one being a superset of the other—i.e., if we add a few
more targets to T' to get T'—then the ideal targets,

Ideal (T, F) and Ideal(T',]'"),

should be easy to convert from one to the other.

Hierarchical Targeting. Third, we consider the case where the emulator has
a set of targets that are related to one another in a hierarchical fashion. Rather
than amalgamating the targets into a single ideal target, the emulator might
instead use the hierarchy to guide the emulation process. For example, given a
finite set of targets 77, ..., T, € Fg (]Mz ), the emulator might go:

Fi:= argmin dg (F,T1),
FeDs(B1)

Fp = argmin dg (F,T2),
FeDr, (By)

Fm = argmin dg (F,Tu),
fED}'m(Bm)

where By, ..., B, € © are thebudgets for each s’cep.61 Ateach step, the emulator
minimizes the distance to the target force, subject to the constraint that the
restructuring costs are less than the budget for that step. The next step begins
with the force from the previous step, rather than the status quo force. We again
think of movement throughout the space in a more dynamic way, this time via
a sequence of well-structured targets, rather than a single ideal target. Since
emulators often change courses, this is an appealing option.

%! There are other ways one could proceed—perhaps one might impose

m—1

@d(@ (Fi, Fis1) <@ Br forallfy € B
i=1

so that the total restructuring costs are less than some total budget.

141



4.2 The Second Rationality

The force space being vast, a force-maker must choose one trick or another to
navigate it. Emulation—choosing some target force and making changes to the
source force to get closer to it—is one such trick. It is intuitive, flexible, and
powerful, and the historical sketches above suggest that it is at least somewhat
realistic. But, it is not the only trick in the book.

The target force in an emulation problem represents a concrete goal that
might not always be available. It could well be that, in the absence of such
concrete goals, the force-maker must rely on more abstract considerations. The
word “abstract” suggests that we will be discussing something esoteric, but the
opposite is true: it could well be that the force-maker uses sentences like

“My force is stronger than the enemy’s force.”

to guide her decisions. We need not bring the Prussian armies of yesteryear into
the picture to understand this sentence, and yet we do not yet have a way to
model it. Purpose-driven logic spoken in the language of force requires thinking
through what steps are required to become stronger than the enemy or some
potential enemy. The abstract consideration is a simple matter of comparing
forces and issuing a judgment.

Remarkably, one can use an emulation problem to arrive at such binary
comparisons—say, one force is stronger than another if it is closer to some ideal
target. This logic has been at work throughout the previous section, albeit in the
background. However, emulation targets are not necessary for the development
of such a means of comparison, and surely they are not the only origins of such
comparisons. The force-maker might have more immediate concerns in mind
than the ideal types lionized by force-theorists. Though Machiavelli might have
had Ceesar in mind when developing thoughts about which sorts of forces are
best, Ceaesar himself likely had no such template. Thus, the introduction of binary
comparisons allows us to expand the set of motivations under study, albeit at a
loss of fidelity to any given motivation.

Of course, binary comparisons play a central role in the theory of rational
choice, where one of the main rationality fables takes as primitive a binary
relation encoding either weak preferene (“— is at least as good as —") or strict
preference (“— is better than —”). It turns out that some of the basic results
one derives from the theory of rational choice can be applied to the problem of
force-making, where the force-maker is the rational agent and the forces are the
alternatives. In this sense, Sections 1 to 3 set the stage for traditional decision-
theoretic thinking by developing an elaborate, comprehensive, structured set of
alternatives, creating a traditional decision problem.
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What should one call the means of comparison between two structured
forces? If a force-maker prefers infantry-based forces to artillery-based forces,
ceteris paribus, then what is the name we’d assign to the impetus behind this
preference? Similar questions arise for highly-detailed org charts versus flexible
org charts, or large officer corps versus small officer corps, or speed versus
firepower, or navies versus armies. We use the following terminology.

4.10 Primitive (Doctrine)

There is a binary relation
> € Fp (M}) x Fi (M)

representing the force-maker’s doctrine. We read “JF1 > F,” as “J7 is at least as
forceful as F,.”

From here one derives

F1>f2<=>f1>f2ﬂﬂdf2%f1,
]:1~.7:24=>}"1¢.7:2and.7:23]:1.

These are read “ F; is more forceful than F,” and “F is as forceful as J,,” respectively.

We can imagine handing the force-maker two structured forces and asking
her to compare them, and she would respond with a statement comparing the
forcefulness of the two. In calling this “doctrine,” we run the risk of using a
multifaceted term in a narrow way; for example, in his Sources of Military Doctrine,
Barry M. Posen ( , P- 13) uses the term to refer both to what means of force
are employed and how they are employed. We are in good position to speak
to his first sense—he specifically refers to the technologies uses, the structures
of forces, and so on—but not the second, which (to repeat a theme from above)
refers more to tactics than to the strategy of structure. Posen’s examples often
involve combinations of technologies and structures, and given the time we spent
on force configuration and conversion, our theory is well-suited to encode these
combinations. For example, Posen’s exemplary offensive doctrine involves “the
method of combining tanks, motorized infantry, and combat aircraft to achieve
rapid victory invented by the Germans in the 1930s, and called Blitzkrieg ever
since” (p. 14); one can imagine a > that tends to favor forces with these
components to the detriment of forces with slow-moving infantry. Naturally,
other doctrines might induce other > relations with different proclivities for
different components: say, Swiss preferences for defensive specialization or
American preferences for forces with a great deal of high-tech equipment. These
preferences, and those of their kind, are what we mean by “doctrine.”
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The symbols just introduced are already familiar to political scientists given
their central place in the theory of rational choice.” But despite this being their
natural home, it would be a mistake to think that they convey any sense of
objectivity. The words “— is at least as forceful as —"” use the word “forceful,”
a value-laden term that is not neutral. That which is forceful in the eyes of one
force-maker might not be forceful in the eyes of another, and this is the case for
various reasons, some of which include:

1. Strategic Context. In On War, Carl von Clausewitz advocates for actions
tailored for disarming the enemy as quickly and decisively as possible.
This is a strategic matter, but it also has implications for the structure
of the force: stronger organization to ensure constant pressure in the
desired direction, more firepower to ensure that the enemy is disarmed
quickly, and so on. Those who adopt this strategy use the word “forceful”
differently than those who adopt a strategy of containment or a strategy
of attrition. The strategic context is a key determinant of what is forceful.

2. Branches. In The Influence of Sea Power Upon History, Alfred Thayer Mahan
( ) argues that naval power is the key to global dominance. His work
was influential in the development of the United States Navy, which has
since been a key part of the United States” military strategy. Mahan, of
course, was not alone: for example, Giulio Douhet developed similar
theories in favor of air power in The Command of the Air ( ). Itis not
hard to imagine similar arguments in favor of land, cyber, or space power.

3. Logistics and Supply. One force-maker might prefer a smaller structured
force with dense support relationships, wanting only those units she knew
she could keep well-supplied. Another might prefer a larger force with
more units and fewer formal support relationships, wanting to be able to
draw on a larger pool of resources or to live off the land in the name of
maintaining speed and flexibility. Again, differences in doctrine lead to
differences in what is forceful.

4. Technology. The introduction of a new technology can change the calculus
of what is forceful. When the word “artillery” points to catapults and
trebuchets, it is not the same as when it points to cannons and howitzers,
which is not the same as when it points to missiles and drones. The same
goes for infantry, cavalry, and so on. The force-maker’s doctrine will be
influenced by the technologies available to her.

This list is not exhaustive, but it provides several key sources of subjectivity.

62Gee, for example, David M. Kreps’s Notes on the Theory of Choice (1988).
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The introductory theory of rational choice takes as primitive a collection of
these subjective judgments stored in the relation >. The rationality part lies not
in the objectivity of the judgments but rather in their consistency. The traditional
posulates in this introductory theory are as follows.

4.11 Definition (Regular Doctrine)

We say that the doctrine > is weakly regular just in case it satisfies:
1. Reflexiveness: for all F € ]FI*{ (]MZ ), we have F = F; and
2. Transitivity: for all F1, F,, F3 € Fx (]MZ ),
Fi1 = Fpand Fp = Fs  imply  Fy = Fs.
We say that the doctrine > is regular just in case it is weakly regular and satisfies:
3. Completeness: for all F1, F, € Fg (]MZ ), we have F| = Fp or Fo = Fq.

Reflexiveness is the idea that a force is at least as forceful as itself, which is
simply a check on the concept our language points to. The somewhat-awkward
terminology “— is at least as forceful as —" naturally means to include the case
where a force is compared to a copy of itself: you are at least as tall as yourself,
at least as old as yourself, and so on. There is no real rationality bet here, but
it remains an important and necessary condition. The main rationality bet is
transitivity, which says that if one force is at least as forceful as another, and that
force is at least as forceful as a third, then the first force is at least as forceful
as the third. This is the consistency condition that makes the doctrine a useful
tool for the force-maker, the thing that allows her to put the forces into some
kind of order. One can construct a theory of rational choice from reflexiveness
and transitivity alone, but (as we will see) this falls short of some of the more
interesting results in the theory. Completeness is the condition that ensures that
the force-maker can always make a comparison between two forces, even if she
is no more than indifferent between them. She may not respond with apathy,
only indifference—and in particular, she may not say the forbidden words “I
don’t know” when asked to compare two forces. Completeness is therefore a
more stringent condition, one you and I fall short of when picking one tomato
from a pile of tomatoes at the grocery store. But whereas you or I do not compare
each pair of tomatoes due to constraints on our time, attention, and dexterity, it
seems that the force-maker (and her team) are more likely of thinking through
many more comparisons than we would be willing to endure. Of course, the
sheer size of the force space makes this a daunting task, but it also stands to
reason that she is capable of abiding by completeness in subspaces of the force
space, where the number of comparisons is more manageable.
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Emulation problems as studied above give rise to doctrines, and it is natural
to ask what properties these doctrines have.

4.12 Lemma (Emulation Doctrine)

Consider an emulation problem parameterized by budget B € ©, status quo force
S € Fy (]MZ), and target force T € Fx (]Mz) Define the doctrine

Fi1 27 F, ifandonlyif de (F1,T) <e de (F2, T).
Then, the doctrine > is weakly regular.

The doctrine > is regular if, and only if, <g is complete on imdg (-, T).

Proof. This is straightforward.

1. Reflexiveness: choose any F € Fg (M7 ). Since dg (F,F) = Qg by con-
struction, we have F >5 F.

4

2. Transitivity: choose any JFi, F,, F3 € Fx (]MZ) such that

de (F1,T) <o de (F2,T) and de(F2,T) <e de (F3,T).
Fiz=7F FoxTF3

Since <g is transitive, we infer that dg (F;,7T) <e de (F3, T ), which
implies F7 =7 F3. p

3. Completeness: choose any F;, F, € Fx (]MZ ) We handle both implications.

(a) Suppose <@ is complete on imdg (-, 7). Then dg (F1,7) <o
de (F, T) orde (F», T) <g de (Fi,T). From the definition of
=7, we have F, =7 F, or F, =7 F1. J

(b) Suppose >7 is complete. Then we have F; >5 F, or F, =1 Fi.
From the definition of >7, we have dg (F;,7T) <g de (F,,T) or
de (F»,T) <@ de (F1,T). Since F; and F, were arbitrary, this
must be the case across all of imdg (-, 7), which implies that <g is
complete on that set. .

This completes the proof. [

So, emulation problems generate weakly regular doctrines, but their ability to
generate (fully) regular doctrines depends on the richness of the language of
costs. Moving from real-world emulation to the wider class of abstract doctrines
has not cost us anything, and the same problems apply in the two settings.
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Asitis a subset of Fx (]Mz ) xFx (]MZ )—which is to say, a subset of a product
of two uncountable sets—the doctrine > is a large object. If we are to study the
force-maker by observing her decisions, we must be able to make sense of this
large object. One way to do this is to study the properties of the doctrine, which
we have begun to do. Another way is to determine conditions under which the
doctrine can be represented by a function, which is a more manageable object.
Ideally, we would send the doctrine to a function that would output a real
number, which we could then use to study the force-maker’s decisions. Having
endured all of the pains of a non-complete, potentially-complicated order in the
form of the quantales &, W, and O, the reals are a welcome respite.

Now, in the case of decision theory, we call a real-valued function that
summarizes the comparisons from a binary preference a utility function. Utility
functions are powerful tools, the very backbone of applied rational choice theory.
But here, we are not talking about the desirability of an alternative—the thing
pointed at by the word “good” in “— is at least as good as —”—but rather the
forcefulness of a decorated org chart—the thing pointed at by the word “forceful”

in “— is at least as forceful as —.”*’ We adopt the following terminology.

4.13 Definition (Force Scale)

By a force scale we mean a function
ms : Fr (M) — R
that represents the doctrine >—i.e., for which we have
Mi = My ifandonly if my (My) = my (My).

In case such a function exists, we say that the doctrine > is scalable. In case > is
scalable by a continuous function, we say that it is continuously scalable.

A force scale captures all relevant ordinal information contained in a doctrine
while sending the humiliating complexity of Fxr (]MZ ) x Fx (]MZ ) to the friendly
confines of R. It is hard to imagine Fg (M[) on either the left- or right-hand
side of a regression equation, whereas R is the regressionist’s natural habitat.
It would be good news indeed—though by no means a panaceum for issues of

530f course, life is not all that easy even in decision theory, as the word “good” is quite vague.
( ) distinguishes “wanting” from “liking,” which are two different ways of thinking
about what is good. The path from either, or some mixture of the two, to “choosing” is fraught

with peril, and the decision theorist is reminded of the importance of the distinction between “is
and “ought”—not to mention the importance of humility.
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complexity—if the doctrine were scalable. Of course, continuous scalability is
even better, as it allows us to transport even more information from the force
space to the real line and back again.

148



Of course, the idea of using a single real number to capture a state’s relative
strength is not new. The Correlates of War project has long included the Compos-
ite Index of National Capability (cINC) as a measure of state capabilities; given
our material focus with the concept of force, these capabilities are similar in
spirit to the forces we have been discussing. Of course, quantitative researchers
do not have the entire force space at their disposal, and so they must make do
with the data they have. In a classic treatment, ( )
generate what remains the canonical meausure of state capabilities by combining
measures of six indicators: total population, urban population, iron and steel
production, energy consumption, military personnel, and military expenditure.
Since their domain is not the same as ours, it would be a mistake to say that the
CINC score is a force scale as in Definition 4.13. However, one might use the
numbers for similar reasons, reading CINC; > CINC; as “state 1 is at least as
capable as state 2.” The pin-dancing required to delineate “forcefulness” from
“capability” is a task for another day, but it is clear that the two are related.”

Remarkably, the six-dimensional real-valued space used by

( )is similar to the force space in an important respect: it does not
naturally have a total order. This would be the case even if capabilities were two-
dimensional in their inputs: for example, if we looked only at military personnel
and military expenditure, we would still have a two-dimensional space that does
not naturally have a total order.”” The force space is similar, but with (potentially)
many more dimensions: we could, perhaps, record the number each type of
molecule occurs in the force, the number of each type of unit, the number of
each type of officer, and so on. Though highly-reductionist, this manner of
thinking makes the linkages to ciNc logic clear: we would have a spreadsheet
with a countably infinite number of columns, each containing some real number.
And, we could devise a function that reads in these numbers and outputs a real
number, just as CINC reads in six numbers and outputs a real number.” The
force-maker’s doctrine is a more complex object than the cinc function, but the
logic is the same. Whereas we cannot appeal to a scientific-looking formula to
describe the relationship between the high-dimensional space and the scale, we
can still use the same logic to understand the relationship between the two.

64Moreover, the ciNc score is not a force scale because (1) it is not derived from a doctrine, and
(2) itis a function of proxies for capability rather than the forces themselves. The similarity here is
more in terms of the réle the numbers play in the decision-making process, their interpretations,
and the reasonable operations one might perform on them.

65By this we mean that there is no natural way to say that one point in the space is at least as
capable as another. (1,1) and (2, 2) might be easy to compare, but what about (1,2) and (2,1)?
This is precisely the problem that pointed us to quantales in previous sections.

%The cinc function is more nuanced than this, but not by too much.
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In the absence of such a formula, we have no choice but to instead evaluate the
scalability of a doctrine in terms of its properties. The following is a consequence
of the regularity of the doctrine and the countability of the force space.

4.14 Proposition (Scalability of Regular Doctrines)
If > is a reqular doctrine on IFg (]MZ ), then it is scalable. [Proof ]

This is a powerful result, as it means that the force-maker’s doctrine can be
represented by a real-valued function. For all of the complexity of the force
space, the doctrine reduces it to a single dimension, which is a manageable
object. Proposition 4.14 suggests that there is no inherent flaw in attempting
to measure the forcefulness of a structured force, and that the force-maker’s
judgments can be captured by a single number.

Of course, there is a cost to this simplification, namely the behavioral as-
sumptions required to ensure that the doctrine is scalable. As we were just
discussing, any attempt to reduce the complexity of the force space to a real
number requires a set of postulates that ensure that the real number is a faithful
representation of the force-maker’s judgments. Whereas the first rationality
of the manuscript—compositional awareneness, the ability to reason in terms
of sequences of processes—is rather weak, this second rationality is far more
demanding. The force-maker must be able to make consistent judgments about
the forcefulness of structured forces, and these judgments must be complete.
This must be accomplished not only in regions of the force space where the force-
maker has some experience, but also in regions where she has no experience.
This is just what unidimensional concepts like force compel us to do.

Proposition 4.14 is a powerful result, but it is not the end of the story. After
all, we do not know whether small changes in a structured force—by which we
mean changes that induce low restructuring and/or conversion costs—will lead
to small changes in the force scale. To get at this question, we need to unify the
order structure of the doctrine with the topology on the force space.

4.15 Definition (Continuous Regularity of a Doctrine)
We say > is continuously regular just in case it is reqular and satisfies:
4. Continuity: for all structured forces F € Fg (M} ), the sets
Up(F)={G e Fr (ML) |G > 7},
Down (F) = {G € Fg (M}) | F > G}

are closed with respect to the restructuring cost topology.

We will spend a few moments on this definition.
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In words, the continuity condition says that the sets of structured forces that
are at least as forceful as a given structured force and those that are less forceful
than a given structured force are closed with respect to the restructuring cost
topology. If we think about this in terms of sequential intuitions, it is not hard
to see why this is a reasonable condition, at least in a broad sense. Suppose we
had a sequence of pairs of forces, where for each pair, the force-maker judged
the first to be at least as forceful as the second. And suppose these sequences
of pairs converged to a pair of forces—i.e., we eventually got to a point where
the restructuring costs as we moved through the sequence got very small. The
idea behind the continuity condition is that the force-maker’s judgment should
be consistent with the limit of the sequence—if the force-maker judges the first
force to be at least as forceful as the second in the limit, then she should judge
the first force to be at least as forceful as the second in the limit. This makes
sense in many relevant contexts, say if we were making infinitesimal changes to
an org chart, adding soldiers here or there, or reloading a few cannons. If the
force-maker’s judgment is not consistent with the limit, then we might worry
that the force-maker is not making consistent judgments, which would be a
problem for the doctrine. However, one can imagine reasonable cases where
continuity is less acceptable, say if the second sequence eventually converges to a
force with, say, fully-capable nuclear weapons, and the first sequence converges
to a force with no nuclear weapons. The question, then, would be whether it
is reasonable to suspect that small changes in the restructuring inputs could
possible yield such a large change in the force. After all, nuclear weapons are
the product of many costly processes, and it is not clear that they could be added
to a force without incurring large restructuring costs. This is a question for the
force-maker, and it is not clear that the doctrine should be held to a standard
that would require her to make consistent judgments in such cases.

Apologies made, we can now state the main result of the manuscript.

4.16 Proposition (Continuity of a Doctrine Implies Scalability)

If > is a continuously reqular doctrine on Fg (M ), then it is continuously scalable.

This result obtains from a very famous result due to Gerard Debreu ( ), the
most general of the traditional representation theorems in the theory of rational
choice. It relies on little more than the countability of the force space (for which
we worked so hard in Sections 2 and 3) and the continuity of the doctrine. It
asserts that small changes in the force space will lead to small changes in the
force scale, which is a comforting result. Adding a few soldiers here or there, or
changing the structure of a few units, will not lead to large changes in the force
scale, so long as the force-maker is making consistent judgments.
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Something that wouldn’t have made sense had it been said in the beginning.
Your humble author has not been trying to keep things opaque, but rather to
build up to a point. Make no mistake: Propositions 4.14 and 4.16 are not the end
of the story, but they certainly are the climax of the manuscript.

The constructions of this manuscript are not the only way to think about
the force space: we could have applied a different topology to the force space,
for example, or just used on that came off the shelf. But the way we have done
things adds a particular interpretation to Proposition 4.16. Suppose the force-
maker has some preference relation over the force space, and that you and I
were tasked with scaling this preference relation into a real-valued function. We
would assign each structured force a real number, hoping to do so in a way
that respects the force-maker’s judgments. But, every now and again, we might
announce a number the force-maker found to be absurd. “How could you have
assigned /7 a 0 when you gave JF, a 1?” she might ask, insinuating that F; is at
least as forceful as F;. This is, of course, a reasonable question for her to ask,
and it is not up to her to abide by our mathematical formalism—indeed, quite
the opposite. It is we who must ensure that our formalism respects her judgments,
not the other way around.

This is precisely why the topology on the force space must be constructed in
the terms of the costs the force-maker pays to restructure her forces. Our response
to the force-maker might be something of the form “your points are valid, but at
the very least you could change the forces a little bit to arrive at our conclusion,
approximately.” But approximately to whom? It’s easy for us to say that the
restructuring costs are small, but it is the force-maker who must pay them. The
force-maker’s judgments are the only ones that matter, and it is her judgments
that must be respected. This is why:

1. We have not required that the force-maker is aware of every way of get-
ting from one configuration to another, nor from one structured force to
another—instead, we have only asked for compositional awareness. To
have done otherwise would have been to set the force-maker up for failure.
Imagine how she would have felt if we stated “you could change your
forces a little bit to get from F; to F,” and she had no idea how to do so.
The glibness of our statement would have been a slap in the face.

2. We have notimposed a language of cost, instead allowing the force-maker’s
reasoning to be in any language that satisies the minimal requirements
of a quantale. We even allowed her to speak in different languages about
conversion versus restructuring costs. To have done otherwise would have
been to impose our own understanding of the world on her, rather than
allowing her to speak for herself.
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3. We have constructed the weak metric in terms of her understanding of
things spoken in the language of her understanding of costs. It is not up
to us to discuss what is near and what is far in the context of a force-space
we, quite frankly, will never navigate. It is up to the force-maker to decide
what is near and what is far, and it is up to us to respect her judgments.
Our task is to ensure that the force scale is a faithful representation of her
judgments, not to impose our own understanding of the world on her.

4. We have constructed the force scale in terms of her judgments, rather than
some absolute standard. There is no one doctrine thatis correct, and while
surely some are more useful than others, it is not up to us to decide which
is which. It is up to the force-maker to decide what is forceful and what
is not, and it is up to us to respect her judgments. Our task is to ensure
that the force scale is a useful tool for understanding the force-maker’s
decisions, not to impose our own understanding of the world on her.

In other words, we have constructed the theory in terms of the force-maker’s
understanding of the world, rather than our own. The decisions we have made
have been in the service of analytic humility, the idea that we should not impose
our own understanding of the world on the force-maker, but rather allow her to
speak for herself. This is the only way to ensure that the force scale is a faithful
representation of the force-maker’s judgments, and that the theory is a useful
tool for understanding the force-maker’s decisions. Of course, these decisions
have made our life somewhat difficult, as the concepts at work are not the most
familiar. Their introductions have been slow and deliberate, but it would have
been impossible to justify them in the terms just enumerated ex ante. It is only
now that we can see the full picture.

To be sure, we have occasionally proceeded as if we know things the force-
maker does not. For example, we took as primitive the set of conversion mor-
phisms between any two force configurations before compelling the force-maker
to choose one element from each set. But, never did we say that we knew
anything about these morphisms save for their existence, and never did we con-
struct anything in terms of conversion morphisms save for those selected by the
force-maker. It is an assumption—and not an empirically-verifiable one—that
the morphisms can be stored in a set, and the Axiom of Choice plays no small
role in the execution of the choice schedules. But, the force-maker is not required
to know this to “discover” new technologies that generate new conversion pos-
sibilities, nor new ways of organizing her forces that generate new restructuring
possibilities. We have respected her limitations while constructing the theory,
but we have also respected her ability to transcend them. It is hoped this aside
will clarify the humble spirit in which the theory was constructed.
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4.3 Strategic Calibration

Before we wrap up, it might help to offer a dessert course to demonstrate the
usefulness of the previous few results. After all, now that we have a real-valued
scale representing the forcefulness of structured forces, we can use it to study
those decisions the force-maker makes with forcefulness in mind. There is a
robust literature in game theory on strategic arming, where two or more players
decide how to arm themselves in the face of a potential conflict.

Many models in this literature employ contest models where the players’
likelihood of military victory depends on the relative strength of their forces,
which is endogenously determined.”’ For example, consider the following set-up
from a subgame in ( ).

4.17 Game (Contest Model of War)

Two states, i € {1,2}, decide how much to invest in their military forces, m; € R,.
The probability that State i wins a war is given by

m; .
L ifmy +m, >0,
i (my, my) = 4t f ! :
5 1fm1 +my, =0.
The payoffs are given by
U; (my, my) = m; (my, my) V=« (my + my),

where V€ R, is the value of winning the war and where x € [0, 1] is the proportion
of effort that cannot be recovered by the winner.

The game has a unique Nash equilibrium where

*_V_ *
ml—E—T’HZ.

Simple and elegant, the model captures the essence of strategic arming in a
contest model. The players invest in their forces, and the player with the larger
force wins the war with probability equal to the proportion of the total force she
has. This maps rather naturally to a von-Neumann-Morgenstern utility function,

67See, for example: ( ); ( ) ( ) ( )
(1993); (2008); (2009); (2010);
( ) ( ). Other strategic-arming games exist where the decision

is binary—say, to arm or not to arm; see, for example: ( , );

(2014); (2016, 2018); (2020).
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where the player’s utility is the probability of winning the war times the value
of winning the war, minus the cost of investing in the force. The game’s Nash
equilibrium reflects the delicate balance between the marginal costs (k) and
marginal benefits (V') of arming as a strategic investment.
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But what is m;? In the model, it is a non-negative real number, but what
does it mean? What information does it encode? In a similar (albeit dynamic)
model, ( ) continually refers to these as “force levels,” and this seems
like a reasonable in’cerpretation.68 After all, for fixed m,, it is the case that

I . . I
my = my ifandonlyif Ty (my, my) = 14 (ml,mz) ,

suggesting that, in a very real sense, 11 is at least as forceful as mi—after all, it
has a better chance of winning the war. Thus, it seems reasonable to interpret
m; as a measure of the forcefulness of State i’s military forces, even if we don’t
have any information about what those forces look like.

Given the symmetric set-up of the game,69 it is unsurprising that the two
states choose the same force level in equilibrium. But, does this mean that we
should expect the two sides to arrive at the battlefield with exactly the same force?
The same number of units, the same number of soldiers, the same number of
tanks? The same uniforms, the same support relationships, the same training?
Of course not, and it would be uncharitable to suggest that the model implies
this. Well then, what does the model imply? It seems reasonable to argue that

|4 gV
M (’F) = R}= My, (E)’

|4 af(v
M, (’F) = E}z My, (E)’

where F|' and F; are the structured forces that State 1 and State 2, respectively,
choose in equilibrium; where >; is the doctrine representing State i’s judgments;

Fi e {}' € Fg (M7)

Fy € {}' € Fg (M7)

and where m;il is the preimage of the force scale under the force-maker’s
doctrine. In other words, the model implies that the two states will choose
structured forces that are at least as forceful as the force level that maximizes
their utility. However, the subjective nature of the force scale—not the mention
the varieties available within a given preimage of a force level—suggests that
the two states will not arrive at the battlefield with exactly the same force.

68 (2008) specifically refer both to levels of force and other factors like the
technologies available and the tactics employed. The first of these has a natural interpretation
in the force space, whereas the latter is more difficult but manifests in things like organization
and technologies. We cannot guarantee full coverage of the myriad concepts at work here, but it
seems like the first few cuts are reasonable.

6 ( ) do not stop at the symmetric case, allowing for differences both in
the relative technologies of the two states and the decisiveness of the war. Relative technologies
seem best captured by the force space rather than the real-valued force scale, though it is not hard
to imagine linkages between the two. Decisiveness of the war—the degree to which the side with
the larger force can expect to win—is more definitively outside of the force space, and best left to

applied modeling after the fact.
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Can we go further? It would be good news indeed if the preimages derived
above were nonempty, and we currently have no such guarantee. Indeed, because
the force space is countable, the force scale cannot be surjective: its domain
has strictly fewer elements than its codomain. Even if we restricted attention to
the rational numbers Q, there would be no guarantees that each element of the
codomain would have a nonempty preimage. We could instead think in terms
of approximations, where the force-maker’s judgments are consistent with the
force scale to within some small error—say,

a((V_ Vo). V o ecm vV ..
m; ((R_é’EJré))_{}—lR_é<ml(}—)<ﬂ+é}

which would be nonempty for large enough ¢. This would suggest that the two
states would choose structured forces that are at least as forceful as the force
level that maximizes their utility, to within some small error. As a corollary to
Proposition 4.16, we have the following.

4.18 Corollary (Preimages of Jittered Force Levels)

If > is a continuously regular doctrine on Fg (M7 ), then for all € > 0, the preimages

-1 V VV - - V ~ . V ~
m; ((E_é’ﬁ-‘_é))_{]:lR_é<ml(}—)<ﬂ+é}

are open in the restructuring cost topology.

Since they are open in the restructuring cost topology, the preimages can be
written as unions of open balls in the restructuring cost topology—i.e., small
margin for error in the force scale implies small margin for error in the force
space. This is a fresh manifestation of our humility comment above: in case the
force-maker scoffed at being told to construct a force with a scale of exactly V/4«,
we can now say that she can construct a force with a scale of approximately V [,
where the terms of the word “approximately” are hers to define.

Now, the mere fact that we can cover the preimages with open balls does
not mean that the preimages are nonempty unless ¢ is large enough. But, this
is a entry point to the logic at work here, the logic of strategic calibration. The
force-maker’s judgments are not perfect, and the force scale is not a perfect
representation of her judgments. However, thanks to the continuity of that scale
under mild impositions on her doctrine, we can begin to form linkages between
the simple, applicable world of force levels and the nuanced, complex world of
structured forces. Moreover, the substantive terms of the construction bode well
for our ability to determine what to expect from the force-maker’s decisions, so
long as we dedicate ourselves to understanding her understanding of costs and
doctrine. Of course, that is a difficult task, but at least it is known.
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So, how do we know that the situation is amenable to strategic calibration?
The existence of Nash equilibria in games like Game 4.17 usually depends on
one of two factors:

1. Diminishing returns in the contest: observe that the contest success function
7(; is concave in 11;, so that increasing the force level continuous to improve
one’s chances, but at a decreasing rate. The costs of arming, however, are
linear in the force level, so that the marginal cost of arming is constant.
Eventually, the marginal cost of arming will exceed the marginal benefit,
and the player will stop arming; this is the equilibrium force level. This is
how the model in Game 4.17 works, and it is a common feature of contest
models throughout the literature.

2. Compactness of the strategy space: in the absence of such structural head-
winds, the existence of Nash equilibria can be guaranteed by the compact-
ness of the strategy space. Force levels have a natural lower bound at 0, and
it is natural—though by no means substantively necessary—to include
it as an available strategy. Upper bounds represent resource constraints,
whether they be financial, material, or political. The idea then goes that the
force level is chosen from [0, 717 ], where 1 is the upper bound on the force
level. The resulting strategy space, being a closed and bounded subset
of the reals, is compact, and existence results follow from the Brouwer
fixed-point theorem.

The first of these is very much real-numbers oriented: the concavity of a function,
the linearity of costs, the additivity of costs and benefits—these all exploit the
rich structure afforded by the real numbers. As such, we will notlean on them too
heavily in our analysis, as they are not the most general of results. Compactness,
of course, has been a recurring theme throughout our article, and it applies in
general topological settings, not just in the real case.

To make the linkages clear, we must introduce what resource constraints
look like in the force space.

4.19 Definition (Limited Capacities)

We say the force-maker has limited capacities if she may only choose forces out of some
compact subset K < Fg (M).

Alternatively, limited capacities might be interpreted that, outside of a compact
subset, the costs of conversion and restructuring go to 00, so that the force-
maker is effectively constrained to choose forces from a compact subset. This
interpretation allows for the compactness to arise not just due to resources, but
also the basic understanding of converting one military resource to another.
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It is now straightforward to apply the results of the previous section to the
strategic calibration of the force-maker’s judgments. First, let us observe how
the preimages of the force levels are affected by the limited capacities.

4.20 Proposition (Compact Force Preimages)

If > is a continuously regular doctrine on Fy (M[) and the force-maker has limited
capacities at K & Fg (]Mz ), then for all x € R, the preimage

m; " (x) = {F € K| m; (F) =x} €K g Fg (M)

is compact in the restructuring cost topology.

Proof. In case m; "(x) is empty, it is vacuously compact, so suppose it is
nonempty. Being the preimage of the closed set {x} under the continuous
function m;, m; * (x) is closed. Being a closed subset of a compact set, m; T (x)
is compact. n

This suggests that we retain a degree of analytic control over force scaling and
strategic calibration: asking for the set of all forces with a given force level is
a well-defined question, and the answer is a well-behaved object. The fact that
the force space is so nuanced compared to the scaling space—despite the fact
that the scaling space includes more elements—does not mean that the dual
enterprises are incompatible.

The proof of Proposition 4.20 is a simple application of the fact that the
preimage of a closed set under a continuous function is closed and that a closed
subset of a compact set is compact. It is therefore important for us to write out
the more general result, which we state without further proof.

4.21 Proposition (Compact Force Preimages II)
Under the terms of Proposition 4.20, for all x € R and all closed C S R, the preimage

m; (C) = {F € K| m;(F)eC}cKgFx (M)

is compact in the restructuring cost topology.

Again, the continuity of the force scale under the force-maker’s doctrine allows
us to make strong statements about the preimages of the force levels, even when
the force-maker has limited capacities. This, in turn, makes it easier for us to
think through what it would look like to unpack results obtained at the strategic
level into the force space. The ideas at work beneath the surface are complex, but
the results are clear and actionable. To repeat, it is the terms of the relationship
between the two spaces that matter, not the spaces themselves.
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We can write down precisely what is meant by strategic calibration.

4.22 Construction (Strategic Calibration)
A strategic calibration problem takes the form

min de (S, T),
Tem:'(C)

where

1. dg : Fx (]MZ) x Fx (]MZ) — O is the calibrator’s weak metric on structured
forces calibrated by ©;

2. @ & C € Risaclosed set representing the calibrator’s strategic target;

3. m; is the force scale representing the calibrator’s judgments; and

4. 8§ € m; " (C) is the calibrator’s status quo.

Notice the layers of cost at work here: in a game like Game 4.17, there was
already a cost at work, namely the cost of destruction associated with the actual
use of force. The marginal cost term x plays a key role in determining the
equilibrium force level, which in turn would be used to define the strategic
target C. However, the costs of getting around the force space from a given
status quo to a strategically-motivated target remain relevant, just as in the
emulation problem. We therefore have distinguished the costs of the strategic
decision from the more tactical costs associated with making the decision a
reality. The strategic target might be a single force level—say, V/4«, or any other
equilibrium arming level—or it might be a closed set of them.”

The following result is a direct application of emulation logic to the present
problem, taking advantage of the compact structure of the preimages of the
force levels—and, of course, the continuity of the weak metric.

4.23 Proposition (Strategic Calibration Problems Have Solutions)

Under the terms of Proposition 4.20, every strategic calibration problem has a solution.

I many games like this, the theorem of the maximum delivers the useful result that the
correspondence sending parameters to equilibrium arming levels has a closed graph. This entire
graph could be fed into a strategic calibration problem, where the calibrator’s status quo is the
current equilibrium arming level.
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Thus, we have unearthed yet another application of the force space, this time in
the realm of strategic calibration. This one works hand-in-glove with the idea of
a doctrine, but its structure is identical to the non-doctrinal calibration problem.
This dessert course, then, is a fitting end to the meal, a demonstration of the
utility of the force space in understanding the force-maker’s decisions.
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5 What is Force?

[...] the previous submission of force to methods of reason. Civilisation is nothing else than
the attempt to reduce force to being the ultima ratio. We are now beginning to realise this
with startling clearness, because “direct action” consists in inverting the order and proclaiming
violence as prima ratio, or strictly as unica ratio. It is the norm which proposes the annulment
of all norms, which suppresses all intermediate process between our purpose and its execution.
1t is the Magna Charta of barbarism.

José Ortega y Gasset, The Revolt of the Masses ( )

This manuscript began with a simple question: What is force? Given the
centrality of the question in the introduction, it is fitting that the conclusion
should return to it. Of course, given the nature of the answer proffered in
this manuscript, simple summaries are exceedingly difficult. We have explored
the concept not through definitions, nor even through historical examples, but
rather by developing a theory of force and an attendant mathematical model.
In your humble author’s view, that theory and that model are the answer to the
question. To describe force is to employ the concepts named by the theory and
encoded in the model, nothing more and nothing less.

The section headings of this manuscript have been chosen to reflect basic
stylized facts that appear to be true of force. These facts are exceedingly simple:

§ Force is atomic, arriving in discrete packets.

§ Force is a resource, capable of being collected into a setting and capable
of being converted from one form to another.

§ Force is organized, consisting not just of collections of force but of collec-
tions of force that are organized into structures.

§ Force is a concept, something that can be manipulated, reasoned about,
and used to simplify aspects of the world.

The model developed in this manuscript reflects these facts, which—despite
their apparent simplicity—gives rise to a rich and complex theory of force. We
have used a wide variety of techniques to explore the model, borrowing concepts
from order theory, category theory, graph theory, algebra, topology, and the
theory of metric spaces, not to mention a smattering of the usual suspects from
the social sciences: decision theory, game theory, and the theory of organizations.
This has not been done for the sake of it, but rather because the concept of force
has pointed us in these directions. It is remarkable what one must learn in order
to understand something as simple as force.
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We have taken a particular approach to answering the ontological question
of force, and this deserves some reflection. We took inspiration from Quine’s
criterion that “to be is to be the value of a variable” and applied it to the concept
of force—i.e., we have answered the question of what force is by asking what
class of things accommodates it. In a sense, our answer to what force is

A force is a finite partial order representing an organizational chart,
along with a countable set of hypergraphs on the same set of
nodes representing non-command relationships, where each node
in the partial order has been assigned some collection of connected
graphs representing the molecules of force, where the nodes of these
molecules are assigned one of a countable set of elements of force.

This is essentially what we have encoded as a structured force, and the set of all
such things—]Ff{ (]ME )—is the variable that takes on the value of force. Thus, to
answer the ontological question of force reduces to answering questions about
how one ought to structure the information one uses when reasoning about
force—literally, what do you need to know to describe a force in its most essential,
most basic form? What are the columns in the data-set you would use to study
force, and what values does each column take?

But is that all we’ve done, is constructed a set of partial orders with some
fancy décor? Perhaps so. And yet, the facts just enumerated encouraged us to
look into particular properties of these structures, and in so doing we unearthed
a variety of insights that seem more than just the sum of their parts. Much
of this was done in the service of constructing a reasonable topology for the
set of things called force, which (as we’ve just seen) was done in the service of
understanding the conditions under which force can be used as a self-simplifying
concept. And because we wanted to know when this was the case, the topology
we constructed needed to bear properties that made sense, given the stylized
facts we had identified. We needed the space between two forces to represent
the difficulty of transforming one into the other, since otherwise we would run
the risk of committing analytic hubris. This pointed us toward thinking about
force like a resource, which in turn committed us toward particular formal
structures. The continual cycle between the facts and the theory, the theory
and the facts—not to mention the model and the facts and the theory and the
model and the...—is the fountainhead of those few insights we have uncovered.
Precisely because we wanted to know what it would take to know something
about force, we have learned something about force, and perhaps about knowing.
All the while, we have felt the continual pull toward humility, making sure not
to impose too much on the concept of force, but rather to let it guide us in our
thinking. We trace the contours of force, but we do not dictate them.
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This manuscript, then, does not contain an answer to the question of what
force is.”' Instead it is meant to be a guide to thinking about force, an experience
of mind that points toward the concept, rather than pinning it down in a box.
But that experience of mind, the structures one encounters and the themes that
emerge, is itself a kind of answer. If the reader’s experience has been anything
like the author’s, one of these themes will have been the sense of beauty that
emerges from the theory of force. Its essential discreteness, its natural fractal-like
structure, the hills and valleys of the metric space linking all forces, the processes
sending one force to another, the continuity with judgment, the parallel between
conversion and restructuring, the unexpected relationship between rationality
and distance, the structure of the force-maker’s reasoning—all of these have a
kind of beauty to them. Had we been theorizing a different concept, we might
have found other things to be beautiful, but they would not be the same as the
beautiful things we found here. Absurd as it might seem, there is something
humiliatingly beautiful about force that invites further reflection. And though
that beauty has not been defined by the abscissas and ordinates we have used
to describe it, it has been illuminated by them in the course of this reflection. It
is hoped that the ignorance recorded in this manuscript will help others to bear
their own ignorance of fact, and to find beauty even in the ugliest of things.

71Whoops.
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A Proofs

This section contains those proofs not included in the main text.

2.5 Lemma (Graph Unions Configure Molecules)
Graph union satisfies the properties of Primitive 2172 [Proof ]

Proof. We address each property in turn.
1. Unitality. Choose any M = (n,E,( n - L) € M;. We have

Mw(0,0,9)=(n+0,Eug,{:n+0-1L),
=(n,E,0:n—>L)=M.

The proof for the other side is similar. ,

2. Associativity. Choose any

M, = (711,]51,51 W L),
M, = (”2,1‘32,52 ‘= L),
M = (n3,E3, 61 n3 - L) € M.
There is no loss of generality in assuming that each of these molecules is

nonempty, as the empty molecule is the identity element for the W operator.
We handle each molecular component in turn:

(a) Size. Molecule (M; W M,)w M3 hassize (11 + n,)+n3, and molecule
M, @ (M, W M3) has size ny + (1, + n3). Addition of natural num-
bers being associative, these sizes are equal. .

(b) Edges. We first construct (E; U E,) U Ej from its components:

XlZ = {(i+1’l1,j+nl) | Z/] e@}/

Xig = {(i + (m +m2), j + (1 +m)) | € s},

"The proof of Lemma 2.5 is straightforward, but it is also a bit tedious and not very illustrative;
as such, it is our first proof relegated to Appendix A. The reader ought to be able to prove
Lemma 2.5 with a little effort, and indeed it is a good exercise.
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where we have grouped the terms in X3 to keep the order of opera-
tions clear. Then we have

(Ey UEy) UE; = (X313 U X32) U X3,
= X711 U Xpp U Xy3,

where we may drop the parentheses because set union is associative.
We now construct E; U (E; U E3) from its components:

Xo = {(111) [ i,j Eﬂ}’
X22 = {(i+n1,j+7’ll)|i/j€@}’
Xy o= {0+ m) + oy, (4 ma) + | € ma},

where we have again grouped the terms in X535 to keep the order of
operations clear. Then we have

E;u(Ea U Es) = Xp1 U (X2 U Xn3),
= X1 U X U Xo3,

where again we may drop the parentheses because set union is
associative. The question therefore reduces to showing that X;; U
X1p U Xq3 = Xp1 U Xpp U Xo3; since Xq1 = Xp1 and Xqp = Xy literally,
we need only show that X;3 = X,3. Addition of natural numbers
being both associative and commutative, we have the required

i+(n1+n2):(i+n2)+n1,

j+(?l1+l’lz) = (j+712)+711.
Thus, the edge sets are equal.
Labels. We define

6(i ifi < ny,
(ue)(y={t) I

82(1—1’11) if i > nq,
([l L EZ) (l) ifi < nq + no,
€3(l - (Tll + 7’12)) ifi > nq + n,.

((hub)uls) (i) = {

Similarly, we define

62(1) ifi < njp,

63(1.—1’12) ifi > ny,

(Luts) (i) = {

51(1) ifi < nq,

(€2u€3) (i—f’ll) if i > ny.

(bhu(buts)) (@)= {
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We need to show that (¢; L {,) U €3 = ¢; U (£, U £3), which reduces
to showing that they have the same output for all inputs. Choose
any i € ny + np + nz. We study three cases.

i. Incasei < ny, we have

((hu &) uts) (i) = (6 ub) (i),
= 6(i),
=(lu (b uds)) (i), as required.

ii. In case ny < i < ny + n,, we have
((Gub)ub)(i)=(6ub)(),
=b(i —m),

=(Lub)(i-m),
= (6 u (L o)) (i), as required.

iii. In case ny + n, < i < ny + n, + nz, we have

(U &) uts) (i) = 6(i — (m +ny)),
=(Lub)(i-ny),
=(lu (L uds)) (i), asrequired.

These cases being exhaustive, we conclude the labels are equal.

We have shown that all three components of the force molecules are equal,
and we conclude that the graph union satisfies Associativity.

4

3. Commutativity. Choose any
M, = (”1151131 L W L),
My = (ny,Ey, by i ny - L) € M.

We must demonstrate that M; W M, = M, ¥ M;. We again handle each
molecular component in turn:

(a) Size. ny + ny = ny + ny by commutativity of + on IN.
(b) Edges. The first edge set is

= ()1 empol(m o) ),
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whereas the second edge set is

ExuE ={(i,j) i, jen}fu{(i+n,j+m)lijem}.

These sets are not literally equal, but we only need them to be iso-
morphic. Being two sets, they are isomorphic just in case they have
the same cardinality. Since the sets are disjoint by construction, we
begin our counting like so:

|Ey U Ey| = [Eq| + |Eaf,
=1} +n3,
=5 +n1,
= |Ea| + |Eq],
= |Ey U E4],

where the second equality follows from commutativity of + on IN.
Thus, the edge sets are isomorphic.

Labels. We have

~ 0 (i if i < mnyq,
{}1(1,):{1(1) ifi <m

4

fz(l - Tl1) ifi > nq,

~ b (i if i <1y,
@(i)z{z“.) s

fl(l - 712) ifi > np,

and we must show that 21 = £72. Choose any i € ny + n,. We study
two cases.

i. Incasei < ny, we have

6(i) = 4,(3i),
= 0(i),

= {,(i), as required.
ii. In case n; < i < ny + n,, we have

L) = 6(i - my),
=4 (i — ny),

= {,(i), as required.
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These cases being exhaustive, we conclude the labels are equal.

We have shown that all three components of the force molecules are equal,
and we conclude that the graph union satisfies Commutativity.

4

We have shown that the graph union satisfies the properties in Primitive 2.1, so
we are done. [Back to the text.] |

2.8 Lemma (Graph Union and Deconfiguration)

For all force configurations |t M € M7, there exists a set {m; : UM - Mi}?zl as
in Primitive 2.7. [Proof ]

Proof. Choose a force configuration [+) M; there is no loss of generality in
assuming that this configuration is nonempty and no real loss of generality in
assuming it is disconnected—i.e., it is made up of more than one molecule. The
whole idea of the lemma is that we know neither the number of molecules in
the configuration nor the identities of the molecules. However, we do know
that [+ M is the output of graph union on a sequence of force molecules M =
My, ..., My for some k. We will refer to the “actual” molecules, numbers,
and labels with undecorated notations, whereas the versions obtained from
deconfiguration will be decorated with hats—i.e., k is the actual number of force
molecules (which we do not know), and k is the number of molecules obtained
from the deconfiguration. We will refer to the “undecomposed” version of the
configuration with bars, so that we are initially given

HMm=(mET:{1,..., 1} > L).
We know that this can be written
k k k
UM = Zni,UEi,f : Zi’li - L
i=1 =

i=1 i=1

but we do not know the value of k, nor any of the 7;s, nor any of the E;s, nor
how to label the vertices.

Step 1: Graph decomposition. Let us first consider the unlabeled graph:

Gym = (Voyr = {1,--., 7} Egyp = E),

where the first part is the set of vertices and the second part is the set of edges.
Our first task is to identify its set of maximal connected subgraphs, which (as it
happens) is a well-studied problem in graph ’cheory.73

"The reader is encouraged to consult Reinhard Diestel’s Graph Theory (1998), Douglas B. West's
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We proceed with a depth-first search algorithm to decompose the graph into
its maximal connected subgraphs. The algorithm proceeds as follows:

0. Initialization: we define two sets and fix their starting values:

VISITED « @,
COMPONENTS « @.

The VISITED set will store the vertices we have visited, and the COMPONENTS
set will store the subgraphs we have found.

1. Selection of Starting Vertex: we select some v € Vg, \ VISITED.
2. Initialization of Traversal: we define two sets and fix their starting values:
STACK « {v}, CURRENT « {v}.

The STACK will store the vertices on our to-explore list, and the CURRENT
set will store the vertices in the current connected component.

3. Traversal: WHILE STACK # @, we do the following;:
(a) Pop Vertex: we pop a vertex u from the stack:

U « POP (STACK),

where POP removes and returns the first element of a set.74

(b) Mark the Popped Vertex: we mark the vertex as visited and as part of
the current connected component:

VISITED « VISITEDU {u}, CURRENT « CURRENT U {u}.

(c) Push Neighbors: we push all unvisited neighbors of # onto the STACK:

ADJ, = {z € VG m ’ (u,z) € EGyn or (z,u) € EGUM}’
ADJ, = ADJ, \ VISITED,
STACK « STACK U ADJ,,.

Introduction to Graph Theory ( ), or Béla Bollobas’s Modern Graph Theory ( ) for thorough
treatments of the subject; we will only use basic concepts from introductory chapters in this
text. One can write entire books on the subject of the algorithms, and indeed many have been
written. The clearest introduction is likely Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein’s Introduction to Algorithms ( ), recent editions of which include a
multi-chapter part on graphs and graph algorithms.

74Since the vertices are natural numbers, we can use the fact that the first element of a set is the
smallest element. So here, POP picks out the smallest element of the set whilst removing it.
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The vertex set being finite, this process will terminate.

4. Record Component: we record the output of the traversal:

COMPONENTS « COMPONENTS U CURRENT.

5. Repeat: WHILE VISITED # Vg, ,,, we repeat Steps 1-4.

The vertex set being finite, this process will terminate.

a4

Step 2: The output of the graph decomposition is a set of connected subgraphs. Choose
any V € COMPONENTS, where this is the vertex set from a “candidate molecule”
obtained from the graph decomposition. Choose any u#,v € V; we must show
that there is a path from u to v. Two vertices are in the same v only when they
are part of the same traversal; this is by construction. Without loss of generality,
we suppose u was put into the STACK before v. By construction, there exists
a sequence of vertices # = uy,...,U, = v such that u; was POPped from the
STACK before u;,1. Thus, the sequence of edges (uy,uy), ..., (Uy-1,Uy) is a
path from u to v; we conclude that V is connected.

4

Step 3: In fact, the output of the graph decomposition is a set of maximal connected
subgraphs. Suppose, for sake of contradiction, that there is some V € COMPONENTS
that is not maximal. Then there is some # € V and some v € VGU ) V such
that there is a path from u to v. The associated sequence of edges is written

(ulr MZ) AR (um—ll um) 7

—_

where u = u; and v = u,. Without loss of generality, we suppose u; € V
for all i < m, so that v is the first vertex in the sequence not in V. But since
v is adjacent to u,,_1, it would have been part of ADJ,, , and therefore would
have been added to the STACK when u,,_; was processed. Once in the STACK, v
would have been POPped and added to the CURRENT set, and thus to V. This is a
contradiction, so we conclude that all V € COMPONENTS are maximal.

a4

Step 4: Formatting the output of the graph decomposition. We have a set of maximal
connected vertex sets COMPONENTS = {Vl, el V,;}, where
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To get to correctly-formatted molecules, we need to assign numbers to the vertices
ineach Vl We will write V, = {Ui,lz N T }, where 71; is the number of vertices
in V;; this is clearly isomorphicto {1, ..., ;}, and we call the associated bijection
Y; : Vi > {1,...,1;}. We can write the correctly-formatted vertex set as

@ = (Vi (vig), - ¥i(vig))-

We can now write the correctly-formatted edge set as
Ei={(¢i(u),¢i (@) | (u,0) € Egy\ }-

As for the labels, we define each 7; : n, — L by restricting the original { to the
vertices in V;:

b=toyi.

We can now write the correctly-formatted molecule as

M; = (ﬁi,Ei,fz‘)-
This is our candidate molecule, and since i was arbitrary, we have a set of
candidate molecules {Ml, .., M ,;}.

4

Step 5: For all identified molecules Mi, we have Mi = M,;. Finally, we must show
that the molecules we have identified are isomorphic to the original molecules
in the sense of Remark 1.4. We have M; = (ﬁi,Ei,E) and M; = (n;,E;, {).
We must show that there exists a bijection ¢; : ﬁ: — n; such that Ei =

{(@i (1), @i () | (u,v) € E;}and §; = Loy, |- We have already constructed
such a bijection 1; and shown that it is an isomorphism of graphs, so the iso-
morphism of molecules follows.

a4

Step 6: Conclusion. We have shown that the graph union operator is decon-
figurable, and we have constructed a set of deconfigurations that recover the
original molecules from a configuration. [Back to the text.] [

3.6 Proposition (The Set of All Structured Forces)
F* (]MZ) is countable. [Proof ]

172



Proof. F™ (M ) is a subset of a set isomorphic to
f. F* (ML) P
U Part (1) x (]ME)E,

where (]MZ )E is the set of all functions from 7 to M} . Choose any 1 € N.

1. The set of all partial orders over 7 is a subset of the set of all relations on
2
n X n, which has cardinality 2(” ),' this provides a finite upper bound on
the cardinality of Part (n).
2. The set of ways to send 7 to M| has cardinality |]Mz |n < N = No.

Thus, the set we take unions over is the product of a finite set and a countable
set, which is countable. The countable union of countable sets is countable, so
we conclude that F* (]MZ) is countable. [Back to the text.] [

3.10 Lemma (Countability of Non-Command Relations)

For all finite V, the set of non-command relations on V is countable.

Proof. We will show that IFg (]MZ) is countable by showing that it is a Cartesian
product of countable sets. Choose any k € IN, and let

V= {R" k- v} =Vh
Evidently, |Vk| = |V| ¥. since V is a finite set and k a finite number, | Vi | is finite.
Define
v = U Vkl
keN

which (being a countable union of finite sets) is countable. Thus, the set of all
ways to assign relationships to the force structure is countable.

Observe that
Fr (M}) =F" (M) x V,

which is the Cartesian product of two countable sets (the countability of F* (M7 )
was shown in Proposition 3.6). Thus, Fxr (]Mz) is countable. [Back to the text.] m
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3.19 Proposition (Subconfigurationhood is a Preorder)

Subconfigurationhood is a preorder on ]MZ.75

[Proof ]

Proof. We check the properties in turn.

1. Reflexivity: Let [H M = U?:l M; € M}, and set 1 = id(y,... ), the identity,
being an injection, satisfies the conditions of the definition. Then M; =
M,y foralli € {1,...,n},s0 Y M < [ M.

a4

2. Transitivity: Suppose [ M; < [ M, and [ M, < |4 M3. We need to
show that [ M; < [ M3. Let 1y ¢ {1,...,m1} = {1,...,n,} and
s 2 {1,..., o} = {1,...,n3} be the injections witnessing the subcon-
figurationhood. Then the composition t1_,3 = 15,30 115 1 {1,..., 11} =
{1,...,n3} is an injection witnessing [+ M < [+ M3.

a4

3. Antisymmetry: Let
m

UMl = L"jMZ‘ (S MZ, and
i=1

L‘_"JM2= @Mi EMZ

i=1

be two configurations such that [+ M; < [t} M, and |4 M, < |4 M;. We
must show that 4 M; = [/ M,. Since there exist injections sending the
units of [+) M to the units of [*} M, and vice versa, the two configurations
have the same number of units—i.e., we have n; = n,. Then there exists
a bijection from {1, ..., 11} to {1,..., 15}, and so the two configurations
are the same up to permutation.

a4

Having satisfied the three properties, we conclude that subconfigurationhood
is a preorder. [Back to the text.] [

"In fact, in the proof it is shown that < is a partial order on M} up to permutation of the
molecules, which is in keeping with the spirit of [¥.
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4.3 Lemma (Continuity of the Weak Metric)
Under the double separation property, the function

dg : Fg (M) x Fg (M7 ) — ©,
(F,G) — (costg o CSg) (F,G)
is continuous, where the domain Fg (M) x Fg (M} ) has the product topology

obtained from the weak metric topology on Fg (M ) representing restructuring costs,
and the codomain © has the strict-bound topology. [Proof .]

Proof. Two matters of set-up:

1. In terms of what we have, let i/ S © be open in the strict bound topology.
It takes the form

U=JI0e,6.),

a€A

where A is some index set and 6, € © for all @ € A. We have all of the
0,5 at our disposal.

2. In terms of what we need, we must show that the preimage of I/ is open in
the product topology; we will now characterize openness in that topology.
Begin with Fg (M ), which has the topology generated by the basis

{B(F,e)|FeEFr(M]),e €@\ [0o]},

where Bg (F, ¢) = {G € Fg (M]) | ¢ > dg (F, G)} and where [0g] is
the equivalence class of Og. We therefore generate the product topology
on IFg (]MZ) x Fg (]MZ) with the basis

{Be (F,e)xBo (G,¢) | F,G e Fg (M), e €®\ [0p]}.

We may use different ¢s for the two sets in the product when necessary.
but often we will use the same ¢ for both. So, we need to show that the
preimage of U is open in Fg (]MZ ) x Fx (]MZ )—i.e., itis an arbitrary union
of sets of this form.

This concludes our set-up.
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We now proceed to the proof. Choose and fix any @ € A; we need to show
that the preimage of [0g, 6, ) is open in Fg (M] ) X Fg (M ). The preimage in
question is

do' (U;) = {(F,G) € Fr (M}) x Fg (M) | 6, >e do (F,G)},

which we need to show can be written as a union of sets of the form Bg (F, ¢) X
Be (G, ¢). Fixany (F,G) € dél (U,); then we know that 6, >g dg (F, G). To
construct our neighborhood, we need to find some ¢ € © such that Bg (F, ¢) X
Be (G, ¢) € dg (Uy).
Since 6, > de (F, G), the double separation property of © entails the
existence of some € >g 0g such that
0, 20 € e do (P,G) DPp €.

Choose any (F g G') € Bg (F, €)X Bg (G, €). Now, from the Triangle Inequality,
we have

do (F',G') <o do (F,F) ®e do (F,G) ®e de (G,G').

. I I . .
By construction, we have dg (F ,F) <p ¢ and dg (G, G ) <@ &; since ®g is
monotone and <g is transitive, we infer

de (F’, G') <@ € ®p do (F, G) Dp €.
A final application of transitivity of <g gives
do (F',G') <e 0.

This shows that Bg (F', 8) X Bg (G', 8) c dél ;).

Now, let ¢ (F, G) be the ¢ that we constructed for each (F,G) € dél ;).
Then we have

do (U)= |J Be(F &(F,G))xBe(G,e(F,G)),
(F,G)edg' (Us)

which—as a union of sets of the form Bg (F, ¢) X Bg (G, ¢)—is open in the
product topology. [Back to the text.] L]

Before proving Lemma 4.5, we need a bit of set-up. First, let us generalize
the notion of a sequence to that of a net. We do so because our problem
lacks structure in many key ways; the two most problematic are the lack of
completeness of 2@ on O and the fact that dg is not a full-blown metric (in
particular, the lack of symmetry is a problem). So, let us give a general definition
of a net.
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A.1 Definition (Net)

Let (X, <) be a preorder. A netin X is a function ¢ : A — X from a directed set A\ to
X. We write @, for (A).

Given a net, we can define the oddly-tricky notion of a subnet.

A.2 Definition (Subnet)
Let ¢ : A = X beanet. Asubnetof @ isaneti) : A' = X such that there exists a

function A : A' = A such that, for every A" e A, there exists some Ay € A such that
)\(A’) < Ay and Pry = 1711)\'.

Finally, we introduce the idea of a net having converging subnets.

A.3 Definition (Convergent Subnets)

Let (X, T) be a topological space. We say a set K € X is has convergent subnets just
in case every net in K has a convergent subnet—i.e., if {X,} e is a net in K, then
there exists some x € X and some function A : A = A such that, for every open set
O € T containing x, there exists some A e A such that Xy € O forall A Z A.

This is important thanks to the following result; see for example ( ,
Theorem 17.4, p. 118).

A .4 Theorem (Compactness is Equivalent to Convergent Subnets)

Let (X, T) be a topological space. A set K € X is compact iff it has convergent subnets.
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Now we can prove Lemma 4.5.

4.5 Lemma (Emulation Problems Have Compact Domain)

Under the topologies from Lemma 4.3, the set
Ds (p) = {F € Fr (ML) | p 20 do (F,S)} < Fr (M)

is compact for any S € Fg (M} ) and § € ©. [Proof ]

Proof. Suppose © has the strict-bound topology, and fix any S € Fg (]MZ) and
B € ©. We will proceed in a few steps, including a bit of setup.

Step 1: Introducing the S-map. We define

do (S,+) : Fr (M[) — ©,
f'—’ d@ (S,]:)

This sends a structured force F to the distance between S and F. We know dg
is continuous (Lemma 4.3) when © is equipped with the strict-bound topology,
so this map is continuous. Put a pin in this for now.

Step 2: Introducing the target set. We also define
[@@,ﬁ] = {9 €®|@@ <g 0 S@‘B} c O.

We immediately observe that [ Og, ] is compact under the strict-bound topology.
To see why, let {O,},e4 be an open cover of [0g, 8] Since 8 € [0g, f], there
exists some &y € A such that § € O, —i.e., some 0,, such that 6,, >g . But
then, since Zg is transitive, we can cover all of [@@, ﬁ] with O,,. This shows
that [0g, B] is compact.

4

Step 3: The nets. Now consider any net {F, },¢, in Ds () where A is a directed
set—that s, for any two A1, A, € A, there exists some A3 € AsuchthatA; Sj A3
and A, €5 Aj. Itis attached to the net

{de (S, FA)}rea €[00, B]

by way of the function dg (S, ). Since [@@,ﬁ ] is compact, this net has a
convergent subnet {dg (S, Fr)} yrep—this is Theorem A.4. This means that
there exists some 6% € [®@,ﬁ] and some function A : A' - A such that,
for every open set O € T containing 6%, there exists some A € A' such that
do (S, ]:)\()\')) € O for all AI EIN A

a4
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Step 4: Pulling the subnet back. Since dg (S, +) is continuous, the fact that the
subnet {deg (S, Fi')}ienr converges to 0 means that the subnet {Fyi} icqr
converges to F -, where F~ is the preimage of 0" under dg (S, +). Moreover, by
construction we have

d@ (S,]:*) = 9* <p ‘3,
so that we have 7~ € Ds (B).

Step 5: Conclusion. We have shown that every net in Dgs (B) has a convergent
subnet; by Theorem A 4, this means that Dg () is compact. [Back to the text.] m

4.6 Proposition (Emulation Problems Have Solutions)

Under the topologies from Lemma 4.3, the emulation problem has a solution. [Proof.]

Proof. Choose any status quo force S € Fg (M ), any target force 7 € Fg (M; ),
and any budget § € ©. Define the map

d@('/T) :]FI: (]MZ) B ®/
Fr— d@ (]:,T)

This map is continuous by Lemma 4.3. The set Ds () is compact by Lemma 4.5,
so its image under this map,

de (Ds (), T)={de (F, T)| FeDs ()} €O,
is also compact. Moreover, since ® has all joins, there exists some

\/ de (Ds (B)., T)

such that

0 20 \/ de (Ds (B),T) forall 0 € do (Ds (B), T),
\/ de (DS (ﬁ) , T) 2@ O for all other such 6.

Since \/ dg (Ds (B), T) is compact, we know that
\/ do (Ds (), T) € do (Ds (B). T).
so there exists some F* € Dg ( ﬁ) such that

do (F*,T) = \/d(a (Ds(B),T) € (de(Ds(B),T))-

By construction, this F * is a solution to the emulation problem. [Back to the
text.] [
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4.8 Lemma (Continuity of &)

The function ®g : © X © — © is continuous in the strict-bound topology if, and only
if, for any pair of labels 0,, 0, € ©, there exists some 01 o~ 0, € O such that

0; ®p 0, <@ 01 ifandonlyif 03 <g 01 o= 0,,

called the strict left adjoint of ®g. [Proof ]

Proof. Suppose that, for any pair of labels 07, 0, € O, there exists some 0; o
0, € O such that

0; ®g 0, < 0; ifand only if O3 <g 61 - 6,.

We will first show that this condition ensures that ®g is continuous. Begin from
an open set on the right-hand side,

0 =[] [0e,64),
a€A

which is a union of upper sets in the strict-bound topology in ©. Its preimage
under the join operation, (&g )71 (0), is the set of all pairs of cost labels whose
join is less than some 6, for some o € A:

{(61,0,) EOXx0O| 0, 89 0, <g O, forsomea € A} € O x O.

We need to show that this set can be written as a union of open sets in © X O,
which means we need to be explicit about the product topology under our
strict-bound topology. The product topology is generated by the sets

{(61,0,) e@x© | 0; <o 01and 0; <@ 0,},

where 01, 6, € O.
Now, choose and fix any a € A, and consider the set

U U {eue,

O1<90, O,<g0,-0;

which is a union of open sets in © X O, the first upper bound being 0, and the
second upper bound being 6, - 6. I claim this is the preimage for [0g, 0,)
under the join operation. We must prove two inclusions.
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1. First, suppose that (61, 60,) € (00) " ([0o, 64)), meaning that 0; &g
0, <@ 0,. From the definition of o—, we know that 6, <g 6, o 61, which
gets us halfway there. However, since ®g is monotone, it is immediate
that 0; <@ 0,; otherwise, we could not have 0; ®g 0, <@ 0, to begin
with. We conclude that (0, 6,) € U91<®6a U92<®9a°_61 {(64,6,)}.

a4

2. Second, suppose that (01, 0;) € (g <. Up,<00,0-0, {(01,02)}. Since
0, <g 0, o 04, the definition of o tells us that 6; &g 0, <g 0,. Thus,

(61,6,) € (®0) ' ([00, 6,)). .

Since the preimage of [0g, 0, ) is open in ® x O for all @ € A, we have shown
that &g is continuous.

For the other direction, we observe that the requirement for continuity is that
the preimage of any open set in ® is open in © X ©. This means the preimage
must be a union of sets of the form

U U (6,6},

01<@01 0,<0,

for some 01, 0, € ©. Itis without loss of generality to observe that full coverage
of this set requires 61 = 6,, or else the pair (6,,0g) would not be covered
even though 0, ®g 0g = 0, <e 0,. But what does this mean for 0,7 The
two inclusion arguments above show that the construction works only when 0,
satisfies the condition

0, &g 61 <g 0, ifand Ol’lly if 6, <g 52,

where the biconditional is because we used the deﬁnition of - in both directions,
one for each inclusion argument. We conclude that 0, = 0, o 0; must exist for
the preimage to be open, which completes the proof. [Back to the text.] L]

4.14 Proposition (Scalability of Regular Doctrines)
If  is a reqular doctrine on Fg (M ), then it is scalable. [Proof .]

Proof. Let us first show the standard result that ~ is an equivalence relation.

1. Reflexiveness. Let F € Fg (]Mz) We must show that / ~ F. Since > is
complete, we have F > F or F > F. This reduces to F ~ F, as desired. |
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2. Symmetry. Let F1, F, € Fr (]Mz) be such that /; ~ F,. We must show
that 7, ~ F7. From the definition of ~, we have F; > F, and F, > Fj.
Logical conjunction is symmetric, so we have 5, > F; and F; > F,. Again
from the definition of ~, we conclude that F, ~ Fj, as desired.

a4

3. Transitivity. Let F1, Fp, F3 € Fx (]MZ) be such that /; ~ F, and F, ~ F3.
We must show that F; ~ F3. From the first relation, we have F; > F, and
F, = Fi. From the second, we have F, > F3 and F3; > F,. By transitivity

of >, we have F; > F; and F3 > Fj, and the definition of ~ gives us
F1 ~ F3, as desired.

a4

We conclude that ~ is an equivalence relation, and we use the standard termi-
nology for its equivalence classes:

[F]. ={g e Fx (M) |G ~ F}.
Likewise, we introduce the quotient set
Fr (M7) [~ = {[F]. | F € Fr (M)}
We now define a new relation >* on Fg (]MZ) |/~ by the rule
[F]. =" [F]. ifandonlyif F; > F.

Clearly, >* inherits completeness and transitivity from >. It also happens to
be antisymmetric, as we now show. Let [F1]_,[F,]. € Fg (M} ) /~ be such
that [F;]. =" [F]. and [F]. =¥ [Fi].. Then we have F; > F» and F» > Fi,
implying F; ~ JF,. Since ~ is transitive, anything that is ~ to F is also ~ to /5,
and vice versa. Thus, the two equivalence classes are the same set, implying
that [F;]. = [F,].. This means >" is antisymmetric.

Next, we define a function

* *
¢ Fr (M) /[~ — Q.
Pay special attention to the codomain: we are using the rationals, not the reals.
Since the former is a subset of the latter, it would suffice to identify a function
that works on the rationals and then extend the codomain. Now, since IFg (]Mz )
is countable, so too is its quotient set IFg (IM] ) /~. Thus, we can write it by

Fr (ML) /~={[Al,[Rl,..}.

The rationals are also countable—this is a rather famous result due to Cantor
that your humble will not bother to address here—so we can write them as

Q=1{q1,92 -}

We construct ¢ inductively like so:
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1. seto ([F].) =qu

2. foreachi =2,3,..., weset @ ([F;].) to be the first q; (with respect to its
index) with the same ordering withrespectto @ ([F1].), ..., ¢ ([Fi-1].)
as [ F;]. does with respect to [F1]., ..., [Fi—1].. In other words:

(a) incase F; > Fjforall j < i, we set ¢ ([F;].) to be the first rational
number (with respect to the index) strictly greater than all ¢ ( [.7:] ] _ )
forj < i;

(b) similar reasoning goes in case F; < F; forall j < i;

(c) in case F; is indifferent to any F; for j < i, we set ¢ ([ F;]. ) to have
the same value as ¢ ([]:]L) for the first j < i that is indifferent to

ir

(d) in case F; is strictly better than some F; for j < i and strictly worse
than others (and indifferent to none), we identify where it fits in the

order and set ¢ ([ F;].) to be the average of the two closest rational
numbers.

This is well-defined because of the completeness and transitivity of > and
the order-density of the rationals.

Given the terms of the construction, we have the desired biconditional relation-
ship between > and =, and we have constructed a function that represents the
doctrine. [Back to the text.] [
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